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Abstract

The purpose of this article is to review two complementary schemes for quantum computation
with trapped ions. We initially discuss the first proposal of quantum computations with cold
trapped ions (J. I. CIRAC and P. ZoLLER; Phys. Rev. Lett. 74, 4091, 1995) which requires, prior
to any computation, laser cooling to the motional ground state. This proposal is closely related
to the physics of generating and manipulating N-particles entangled states in both ion traps and
high-Q cavities (cavity quantum electrodynamics). The second scheme is that of quantum compu-
tations with hot trapped ions (J. F. Povatos, J.I. CIRAC and P. ZoLLER; Phys. Rev. Lett. 81,
1322, 1998) which works at finite temperature and resembles physical ideas found in atom inter-
ferometry.

1. Introduction

Initial discussions about the ultimate limits in size of computers seemed to be very far
away from any realistic computing device not so long ago. Even within this purely aca-
demic domain, the subject attracted great interest once the arguments related to reversible
computation led unavoidably into quantum physics [1]. In particular, recent results in quan-
tum complexity and algorithmic theory indicated that quantum computers would solve prob-
lems efficiently which are considered intractable on classical Turing machines [2]. Another
reason for the interest in quantum devices is that the energy consumption of a computation
can be minimized. This is relevant since heat production is one of the limiting factors in
present computing technology [1]. All these reasons triggered the interest in finding experi-
mental setups to implement such quantum computing devices. Although it is still not clear
whether a fully fledged quantum computer will be ever built in the future, small—scale
devices are being constructed in different laboratories worldwide. With these small—scale
processors it is already possible to generate deterministically quantum states with no classi-
cal analogy (allowing possible relevant applications in the improvement of time and fre-
quency standards) [3]. These devices will also help the experimental study of topics such
decoherence, quantum measurement and other fundamental concepts of quantum me-
chanics.

The aim of this article is to survey in a detailed way two complementary proposals
related to quantum computations in the experimental context of ion traps [4, 5]. The paper
is organized as follows. Firstly, we introduce the ion trap setup, basic tools, and their con-
nection with basic computational ideas. We discuss then the cold and hot schemes, present-
ing in detail the models and interactions required to implement quantum computations.
After this, we briefly discuss issues of decoherence and error correction in such devices.
We end up with a comparison between the two schemes.
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2. The Ion Trap Setup

One of the initial advantages of the use of trapped ions was that many of the requirements
needed for implementing quantum computations were already advanced in relation to their
initial application in high precision spectroscopy and frequency standards. In this section
we introduce some of this physics, which will become basic tools in the following discus-
sions [6].

— lIon trapping. Nowadays it is possible to trap and confine atomic particles for a long

time in a small region in space. In the case of ions one can make use of cleverly
designed electric and magnetic fields to create such traps. In the case of a single ion
Paul trap a combination between static and oscillating potentials makes possible to cre-
ate an harmonic ‘pseudopotential’. It is possible then to trap just one single ion in the
place where the potential is minimum.
For quantum computing a linear radio frequency Paul trap is preferably used. The de-
vice consists of four parallel rods. A voltage varying at radio frequency is applied to two
opposing rods while the other two are grounded. In the case of the single Paul trap it is
possible to trap just one single ion in the place where the potential is minimum, due to
the Coulomb repulsion. On the other hand, in the case of the linear Paul trap it is
possible to get a zero radio frequency field not just in a single point but in a line,
allowing the trapping of several ions without any residual heating.

— Laser cooling. This consists essentially in slowing down rapidly ion motion by means
of its interaction with laser light. This can effectively decrease the temperature of the
ions from room temperature down to less than 1 K. The basic idea relies on the
practical use of radiation pressure, the mechanical force associated to every laser
beam. Such radiation pressure, small in a macroscopic scale, is big enough in a micro-
scopic scale (of the order of 10.000 times that due to gravity). To slow down the
atoms, laser beams in opposite directions are applied. By means of the Doppler effect
only those ions moving toward the laser propagation will absorb light and thus de-
crease their momentum.

— Laser manipulation. Rabi floppings, i.e. coherent transitions between the internal states,
are performed by applying controlled laser pulses. The particular ion—laser interaction
will be fundamentally different depending on the intensity of the laser. We will discuss
in detail such regimes in the following sections. An important parameter associated to
laser cooling and laser manipulation is the Lamb—Dicke parameter, which relates the
characteristic length scale of motion of the ion and the wavelength of the exciting laser
light. In the so—called Lamb-Dicke limit the wavelength of the light is larger than the
ion characteristic length scale.

— The quantum jump technique. Measurements of the internal quantum state of the ions
are performed using the so-called quantum jump technique. It is possible to measure the
state of the internal level by considering a three—level V configuration where one transi-
tion is stronger than the other, see Fig. 1. A laser beam is tuned to the strong transition
to measure the state of the two—level system associated with the weak one. This is
measured by the presence (absence) of spontaneously emitted photons from the strong
one.

3. Quantum Computation: Basic Elements in an Ion Trap

The task of designing a quantum computer is equivalent to finding a physical realization of
quantum gates between a set of qubits. We get now more explicit about this, enumerating
in detail basic computational elements and the way they can be implemented with trapped
ions.
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Fig. 1: Laser cooling, coherent manipulation and state measurement is possible by using the
internal (electronic) structure of the ions. The internal levels associated to the weak transi-
tions play the role of the qubits, (|0), |1)). Transition |2) < |0) is a dipole allowed transition
used for cooling and detection, by means of the quantum jumps technique.

— Qubits: The basic elements of the computer. In this case the qubits are the trapped ions
themselves. We need the ion to be in one of two states which will be identified with the
internal electronic states; for example a ground state |g) plays the role of the (quantum)
zero state |0) and a excited state |e) plays the role of one, |1), see Fig. 1. The classical
case would correspond to the situation where the qubit is prepared in one of these states.
However, quantum mechanically we can have any arbitrary superposition of the two
basic states. This requires the system to be very well isolated from its environment. In
the ion trap setup arbitrary coherent superpositions of internal states can be stored for a
long time, longer that the time of any typical computation. This is because very long—
lived electronic levels are used to store the qubits. Finally, a string of ions represents a
quantum register.

— Gates: 1t is sufficient to find how to implement an adequate set of logic gates, in parti-
cular single and two—qubit gates, to perform any general computation [7]. In the next
section we describe in detail how to realize quantum gates in two different regimes,
associated to two different temperatures. Also note that 2-bit quantum gates will be
harder to implement since they require a physical mechanism to strongly couple any
pair of qubits.

— Input/Output: In order to realize any computation we need to both initialize the state of
the computer and to read out the final state of the computation. Initialization is possible
by using laser cooling techniques. It is possible to optically pump the ion to the state
where all qubits are |0). Once the computation is finished, the readout, i.e. the state
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Fig. 2: Set of N ions in a linear trap interacting with N laser beams. The ions have been
previously laser cooled to the ground state of motion. The typical length scale of the quan-
tum register is 100 pm.
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measurement, of the quantum register is possible using the quantum jump technique
previously discussed. Readout can play a role in error corrections schemes likewise.
Finally, note that measurements require a strong coupling of the quantum system to the
environment which is in strong contrast to the initially discussed isolation requirement.
It follows that we need a means to switch on and off the interaction of any arbitrary
qubit to the environment deliberately.

4. Cold Gates

In this section we describe the proposal for quantum computations with cold trapped
ions [4]. In this scheme, illustrated in Fig. 2, each qubit has been laser cooled to its
ground state of motion in a linear Paul trap. Computer operations are realized by means
of coherent laser—ion interactions inducing Rabi oscillations between the selected quan-
tum states of the qubit register. Readout at the end of the computation is done using the
quantum jumps technique.

4.1. Model

Imagine the situation where a string of N ions have been stored in a linear Paul trap.
Moreover the trapping potential is designed such that the frequencies characterizing the
motion in the x,y direction are much larger than the one in the z direction. We can
simplify the description accordingly by considering the motion unidimensional along this
last direction. We consider the trapping potential in this direction in the most general
way, i.e. not necessarily harmonic but given by Vi = £z% Motion is also influenced by
the Coulomb repulsion between ions. The Hamiltonian of the system is given by
H., =T+ V where

4

N pl_2
T:;%,
N 2
VZ( +Z|2Q |>. (1)
i>j %0

This Hamiltonian can be simplified as follows. Since the ions have been previously
laser cooled in all three dimensions (as a requirement, it is necessary to fulfill the Lamb-
Dicke limit for all the modes), the ions undergo very small oscillations around the equili-
brium position. We can expand the potential in a Taylor series around the equilibrium
position

N N
V(r) = ; ;l siAiisj + O(Szj) , (2)
where
Au:_a(a_l)( ) +Z 1 1eq  eq3’
J#i |r |
1
M=~ (£ ©)
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Here s; = r; — r;%, r is an arbitrary displacement direction, z in our case, and we used the
following units: m = Q = &§ = 1. The motion of the ions can be expressed in terms of
normal modes of oscillation. We reexpress the Hamiltonian in terms of the eigenvectors of
the matrix A, where D = diag (11,42, ...) and U are respectively the eigenvalue and eigen-
vector matrices. The problem is thus equivalent to a set of N uncoupled oscillators. We
finally obtain

N qz 1 29 N t
H = L — e = hl»Ai7 4
ex ;(2m+2 mV,Z,) ,; via;a (4)

where we have quantized the harmonic oscillators describing the independent normal modes
as usual. For the case where the confinement potential is harmonic we have
vi =v.,V/3v.,V/5.84,v,.... Here the first mode of motion corresponds to the center of
mass (CM) motion along the z direction.

4.2. Laser—ion interaction

Let us consider now the interaction of a particular ion i with a standing laser wave (a
travelling wave can be treated in the same way). The Hamiltonian describing this situation
is given, in a frame rotating with the laser frequency, by H = Hex + Hin + Hjas Where
(=1

. o, .
i 1 i
Hint - _E 0,

o)

. Q. _
Hllas = 7 sin (kri—’_gai) (O-j +0; )

Here §; = w} — w}) is the laser detuning, £; the Rabi frequency, k the laser wave vector, @,
the phase describing the ion—laser standing wave relative position and r; the ion position,

inati _ & N 1 A T
expressed as a combination of normal modes as r; =r;" + Zj:1 ‘/W Ui(a; —|—aj). We

have also considered the Pauli spin operators associated to two level systems and the crea-
tion and annihilation operators, associated to the harmonic oscillator. Note also that the
laser beam will be applied normally in a direction forming a given angle to the z axis and
thus & will be given by kg = k cos (6).

Interaction with the laser light will induce transitions between the (internal) ground
and excited levels of the ion. These transitions will be able to change the motion of
the ions as well, modifying the states of the normal modes. The situation is different in
the Lamb-Dicke limit and for weak intensities. In this case laser induced transitions
only change the state of one of the modes. Thus, the description of the dynamics is
simplified as follows

e Lamb-Dicke limit: Within this limit it is possible to expand the interaction Hamiltonian
1

2my;

in terms of the Lamb-Dicke parameter <77j =k < 1), keeping only zero order

terms (in the case when the equilibrium position of the ion coincides with the antinode
of the standing wave) or first order terms (in the case when it coincides with the node of
the laser standing wave).

e Weak excitation limit: For weak enough laser intensities it will be possible to excite
selectively one of the motional modes of the ion.
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We can now approximate the ion—laser interaction in the form Hj  ~

~ H' + H}, where

04 . .

H = o} e oy o), (©)
N0 , ,

H, = 7’ mUi(ayo; e + aJ{G; e?).

Here 1, is the Lamb— Dicke parameter associated to vi, and ¢ is the laser phase In the
harmonic case v, =v,, U; =1/ VN, with N the number of trapped ions, and

n=n= 1/ . This is the case considered from now on. Note that this formula is valid

under the followmg considerations:

e Either 2 # 0 (6, =0) or .Qf #0 (0, = —vy). That is, there exists two types of transi-
tions modifying, (b), or not, (a), the motion of the ions.

e [ocation at the node of the standing wave. In this case the weak excitation limit implies
0+ vil,m £ <.

e Location at the antinode of the standing wave. In this case the weak excitation limit
implies 9], 2 < .

4.3. Logic gates

In this section we show how to implement quantum logic gates. Logic gates with just one
qubit will be easier to implement, since they imply individual rotations of each ion, without
changing the motional state. They can be implemented using a laser on resonance with the
internal transition (6; = 0). The equilibrium position of the ion coincides with the antinode
of the laser standing wave. We have seen in the previous discussion how the evolution in
this case will be given by the Hamiltonian H', inducing the following rotation

|¢); — cos (k/2) |g); — i € sin (kx/2) |e);,
ley; — cos (k/2) |e); — ie " sin (km/2) lg); -

We describe now the way to implement quantum gates between two qubits. In this case
the frequency of the laser is chosen such that §; = —v,, that is only the CM mode is
excited, and the ion equilibrium position coincides with the node of the laser standing
wave. The laser interaction is given by the previously defined Hj. Applying the laser beam
for a given time ¢ = kz/(2%7,/v/N) (a kx pulse), states will evolve in the following way

g); 1) — cos (kr/2) |g); [1) — i€ sin (kz/2) €'), [0) ,
[€);10) — cos (k/2) |¢); [0) — i e sin (k7/2) |g); |1) ,
18)10) — 1g) 0}, ()

where |0) (|1)) denotes the state of the center of mass with zero(one) phonon, ¢ is the laser
phase and |¢) denotes either the state |1) of the qubit considered or an auxiliar state selec-
tively excited. This selective excitation can be realized by means of different polarizations
or laser frequencies, experimentally frequencies are better controlled than polarizations.

The logic gate between two ions (qubits) will be implemented as follows (i) By means of
a o pulse focused on the first ion we transfer the internal state of this ion to the CM
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phonon mode, cooled to its motional ground state prior to the execution of the gate. If the
first ion is in a excited state a vibration in the string of ions is introduced. On the other
hand, if the ion is in the ground state the ions remain in place. This is done in order to
convey quantum information between the ions, using the CM mode as a bus. Since all ions
participate in the CM motion they all can see the quantum bus. (ii) we introduced a condi-
tional change of sign by means of a 27 pulse focused on the second ion, by using an
auxiliary state |¢’). (iii) A new s pulse reverses the first step in order to restore the qubit
from the CM mode to the internal state of the first ion. This step completes the following
quantum gate

—~
Yt
~—
—~

=N
=2
~—
—~
(=]
1=
=
~

lg)1 18)210)  —  [g)118)210) — g 1e)2100 — g 18)210),
lg)i le), 10)  —  lg)ile)a|0) —  lg)ile)a|0) —  |g);]e),10),
le)i 1), 10)  —  —ilg) [g)a 1) —  ilg)i1g)a 1) —  le);[8),10),
le)i leo)y [0)  —  —ilg)yle), [1) — —ilg)yle)a 1) —  —le); e}, |0).

(8)

In this way, the effect of this interaction is to change the sign of the states only when both
states are in the excited state while the CM mode comes back to the fundamental state |0).
Note that this procedure can be generalized to n ions and similar n—bits gates.

5. Hot Gates

It is clear in the previous section that neither internal decoherence nor single qubit opera-
tions pose major restrictions to the experimental realization of the computation. Remember
that qubits are stored in long—lived internal atomic ground states and that single bit opera-
tions are accomplished by directing laser beams to each of the ions. On the other hand,
laser cooling to the ground state of motion is still a demanding task [8]. Incomplete cooling
of the collective modes to the ground state implies that the phonons introduced during the
application of the logic gate would be indistinguishable from those at finite temperature,
leading to errors even when 7 ~ 1, where 7 refers to the average phonon number of the
CM mode. The possibility of relaxing this requirement would be very attractive.

In the following we discuss an alternative proposal to realize a fundamental two-qubit
logic gate between two ions in a linear trap at finite temperature [5]. Firstly we introduce
the model and the laser-interaction regime considered in this scheme.

5.1. The model

Consider the case of two ions confined in a linear trap. We assume again that the motion
is unidimensional in the z direction (recall that this approximation will be valid in the
case of a linear trap, where normally v, , > v.). The Hamiltonian describing this situa-
tion will be the one corresponding to a system of two point charged particles in a exter-
nal potential

2 2 2
P1 P2
H="—"+-—"%=+4YV +V
) B (z1) (z2)

©)

S
lz1 — 22|

where V denotes the confinement potential along the z axis, that we assume symmetric
V(z) = V(—z). Making use of the relative and center of mass coordinates, and introducing
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Z. as the separation of the ions in the equilibrium position,
ze =(n1+2)/2, r =20 =21 — Ze, (10)
pe=pi+p2, pr=(2-p1)/2, (11)

we can expand around the equilibrium position z. = z, = 0. Up to second order, we get

H = Hy, + Vcor(Zer) , (12)
where
2 2
P; Pr 1 2o 1 2.2
Hy, = - M A Mr ) 1
b = e am, g MeVete Ty MG (13)

is the harmonic oscillator Hamiltonian and V., indicates corrections of third order and
beyond. Here m. = 2m and m, = m/2 are respectively the center of mass and reduced mass
of the ions, and v, , the corresponding frequencies in the harmonic approximation

1 0V . 407
_ 97 2 14
Ve = e 22 . y =V, + g (14)

In the following we assume that the trapping potential is such that the frequencies v,, v,
are commensurable, i.e. motion is strictly periodic with period f,. In practice, this could be
realized adding external static fields in such a way that the potential V(z) becomes unhar-
monic. It will be possible to change the fields in a continuous way until finding the point
where the frequencies are commensurable, something which can be easily measured. On
the other hand, to be able to use the harmonic approximation related to the original Hamil-
tonian we will not consider corrections due to the Vi, term. This requires Vo, < 1,
where V., refers to the typical values of the corrections and ¢, is the duration of the logic
gate. Under this circumstances, the evolution will be given by

e Mhote = 1, (15)

Note that alternatively one could wait for recurrence times in harmonic traps. We have
checked that is better to have commensurable frequencies v,/v. = 1.5,2, etc. For instance,
v,/v. = 1.5 requires two rings of radius R =2 mm separated by a distance L ~ 3 mm in
the configuration of H. C. NAGERL et al. [Appl. Phys. B 66, 603 (1998)]. In what follows
we assume for simplicity that v, = 2v,.

5.2. Laser—ion interaction

In this section, we analyze the interaction of a trapped ion with a laser beam in the so—
called strong excitation regime [9]. In this regime, the Rabi frequency associated to the
interaction is much bigger than the trap frequency (£2 > v,). This means that we can con-
sider the ion at rest when interacting with the laser beam. We also assume no spontaneous
emission by tuning the laser to an electric dipole forbidden transition |g) < |e). Under such
conditions, the problem can be exactly solved.

To study this regime let us consider the case of a single ion trapped in an tridimensional
harmonic potential. The ion is interacting with a plane laser wave along the z axis. The
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problem can be reduced to one dimension in this direction since only stimulated transitions
are considered. The Hamiltonian describing this situation in a frame rotating with the laser
frequency, wy, is given by (i = 1),

P2 1 Y Q i ,
=on T2 mv:Z* — 5 Ozt (04 et 4o T (16)
m

Hy

Here, Z and P, are the position and momentum operators, v, is the trap frequency in this
direction and m is the mass. On the other hand 0., o_ and o, are the usual spin % opera-
tors describing the internal transitions between the levels |g) < |e), 0 = w, — wy is the
laser detuning, k;, = w/c the associated wavevector, and 2 the Rabi frequency. Subindex
“+” (“—") indicates that the plane wave is propagating toward the positive (negative)
values of x.

The evolution given by (16) can be easily understood if we realize the following unitary
operation U = eT*Zle) (el Using this operator, states are defined as |¥.) = Uy |¥), while
the Hamiltonian can be rewritten as

Q
0, +—

- , o}
H. = UsH UL = vala+ vy (a—al)le) (e] + vt le) (e] — = 5

3 Ox s

(17)

where 0, = 04 + 0_, and we have expressed the position and momentum operators as a
function of the creation, annihilation operators of the harmonic oscillators, @ and al, respec-
tively, and the Lamb—Dicke parameter #, = k. //2mv,. The new terms in the Hamiltonian
(17) correspond to the Doppler recoil energy of the excited state (that is, when one photon
is absorbed).

Hamiltonian (17) can be simplified in the strong excitation regime, £2 > v,. Consider a
laser pulse whose duration 7 satisfies v,7 max(i,7?) < 1, where 7 = (a'a) (this is too
restrictive a condition; see [9] for details). Under this condition, the first terms in the Ha-
miltonian (17) will not affect practically the evolution. In this case, supposing for simplicity
zero detuning (6 = 0), the Hamiltonian reduces to H = %Qox (for both cases, H.). The
evolution for any initial state can be derived, obtaining |¥ (7)) = Ul e 50T UL | P(0)).
It is easy to see that the evolution given by H_ can be obtained from that given by H,. by
simply substituting 17, — —7,. In particular for an initial coherent state |a) we obtain

) la) — Alg) ) + Ble) o in.)
le) |ay — A* |e) |a) — B* |g) |a F i) , (18)

where A = cos (21/2), B = —isin (£2t/2) and the plus (minus) sign corresponds to a laser
propagating toward the positive (negative) values of the z axis. Physically this interaction
describes the flip of the internal state of the ion and the displacement associated to the
absorption/emittion of a stimulated photon.

5.3. Logic gate

Consider the previous situation of two ions confined in a linear trap. The present propo-
sal is based on the following physical concept: according to Fig. 3 we split the wave
packet of the so—called control ion (ion 1) into two (¢ and ¢') moving into different
directions (right and left) depending on its internal state. Coulomb interaction will divide
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Fig. 3: 2-qubit gate based on atom inter-
te-tg ferometry. The atomic wave packet of the
first ion is split using laser light. After a
time fy a laser is applied to the second, ion
flipping its internal state conditional on the

1 2
-~ .
laser state of the first. Finally another laser
> ﬁ\. 3\ brings back the ion to the initial condition.

at the same time the so—called target ion (ion 2) into two (¢5 and ¢%) respectively. After
a time fy, a laser will be focused to the center of the wave packet ¢, inducing a change
in its internal state (|0) < |1)). Finally after a time #, — #y the first ion is brought back to
its original state by means of another laser, giving as a result the following fundamental
two qubit gate

6121 |61> ‘62>—> |61>|(1—61)@€2> (61‘220,1), (19)

where @ denotes addition mod two.

The new concept used in the implementation of the gate is the splitting of the atomic
wave packets in the same way that is done in atom interferometry. After this, it is possible
to realize conditional dynamics associated to the spatial localization of the wave packets.
Under ideal conditions, the realization of the logic gate is independent of the state of mo-
tion of the ions without any restriction of zero temperature. On the other hand the scheme
requires the motion of the ions to be periodic. This requirement will imply the need for a
nonharmonic trap, since for a external harmonic potential the frequencies of the collective
modes are typically inconmensurable (for the case of two ions, the ratio between the fre-
quencies of the relative and the center of mass mode is v/3). We highlight again that this
proposal is fundamentally different to that formerly discussed, where the logic gates be-
tween ions were implemented by means of a selective excitation of the center of mass
mode which had been previously cooled to the ground state.

We extend now in more detail the scheme just introduced. We denote by |0) and |1)
the internal states of the ions storing the quantum information and by
|Z(0)) = |Win) ® |Wmov) the initial state of them. Note that we have considered here pure
states but our analysis will be equally valid for mixtures. The logic 2-bit quantum gate will
be realized in three steps

(i) Displacement of ion 1, depending on its internal state: a laser pulse is applied to ion
1 with the wavevector k pointing along z axis (this can be realized using two Raman beams
such that the difference between their wavevectors k points along z). The laser intensity is
chosen in such a way that the internal state of the ions is flipped |0) < |1). The motion of
the ion is also modified by this laser beam. We write the interaction Hamiltonian between
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laser and ion as

Q ) .
Hlas = E (O'fr elkz' + 0'17 eilkzl) 5 (20)

where € is the Rabi frequency, o = [1) (0| = (¢7)' and the subindex indicates from now
on which of the ions comes into play. The laser is applied for a time #,, = 77/Q2 < t, (this
is the previously discussed strong excitation regime since f, ~ vz‘l) in such a way that after
this interaction the state will be

P(0)) = (07 € + 07 &) [¥(0)) . (21)

According to this expression, when ion 1 is in the state |0) it will be transferred to |1),
moving at the same time to the right due to the photon absorption. Thus, depending on the
internal state of the ion, it will move in two different directions. Due to the Coulomb repul-
sion, ion 2 undergoes as well a different motion depending on the internal state of ion 1.
The distance between these wave packets can be easily calculated by using the Harmonic
approximation

1
d(t) = 2zon |sin (v;1) — 5 sin (2v,1) | , (22)

where zo = 1/(2mv.)"/? (h = 1) is the size of the ground state of the ion with the center of
mass mode frequency and n = kz is the corresponding Lamb—Dicke parameter. The max-
imum distance is given by

D =d(ty) = 3vV3z01/2, (23)

being at #p = 25t/ (3v;).

(i) Flip |0) < |1), conditional on ion 2. After a time fy, a laser beam is applied to ion 2
without inducing any displacement (this can be done using two beams propagating in oppo-
site directions in a Raman transition, or using a laser beam propagating in a direction
perpendicular to the axis z for forbidden transitions). The laser is focused on the position
7= (z. +D)/2, in such a way that it is interacting only with the wave packet ¢, that is
the wave packet that arises if atom 1 was in a state |0). For a given interaction time
11 < tg, this laser induces a rotation |0), < |1),. The state after this interaction is given by

W (1)) = [0 e ™l o &4 4 &7l g 7 *1] [W(0)) (24)
where 05 = 05 + 0, . Later on the ions will oscillate with the free harmonic oscillator
Hamiltonian.

(iii) State dependent displacement of ion 1: after a time t, — 7y we apply a laser pulse
to the ion 1 with the wavevector k pointing in the direction of the z axis as in the step

(i) for a time f,s = 7t/Q. Assuming again fi,, < ty, we can write the state after the inter-
action as

W (1)) = (of & + 07 ™) e HMelem0) 1@ (1)) (25)
Using eqn. (21) it can be easily seen that

¥ (1)) = o707 +0y0{03] [¥(0)), (26)
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which coincides with the fundamental logic gate between two qubits defined in (19).
According to this equation, it is ideally possible to realize the logical gate without taking
into account the state of motion of the ion, pure or mixed. However, the fidelity of the
preceding logic gate will be limited in a realistic scenario. In the next section we will
discuss some of the main sources of errors causing the departure from the ideal case. Note
finally that this scheme is easy to generalize to the case of three ions. Further scaling up is
difficult due to the appearance of more frequencies and the difficulty of make them all
commensurable

6. Errors in the Computation

We discuss now possible error sources found in the previous schemes. The first type
of errors (memory errors) is related to the storage of the quantum register. Errors in
the ion register are due to spontaneous decay of the atomic level. This can be
avoided by using stable ground state levels. Other effects which lead to memory
errors are fluctuations of the trapping fields or imperfect vacuum which causes possi-
ble collisions with the background gas. It has been possible to make all these effects
very small [8].

The predominant type of errors in both schemes are computational errors. These errors
take place only while quantum gates are performed and may have a variety of causes. One
type of error is decoherence during quantum gates. This error will be relevant if the qubits
involved in the gate are coupled to fragile auxiliary systems, e.g. the CM mode acting as a
bus of quantum information in the cold scheme. Other types of errors occur when the
transformations needed to perform the quantum gate are not accurate, e.g. this could be the
case when the wave packets overlap in the hot gate.

In the cold gate scheme quantum gates require the excitation of the CM phonon mode
temporarily. This is a much more fragile quantum system than the internal (electronic)
states. The CM motion undergoes damping and heating due to its coupling to the electro-
des of the trap. Moreover, as we discussed previously, errors in the CM motion can also
arise due to imperfect laser cooling, and this is the main motivation for the introduction
of the hot scheme. It is clear that a single error in the phonon mode can damage the
quantum state which is involved in the gate and, by error propagation the whole quantum
computation.

Although general error correction methods have been developed which can cope with
computational errors [10], these methods require an extensive computational overhead and
may not be applicable at all to prototype realizations like the ion trap quantum computer.
Recently, a scheme to correct errors in the CM phonon mode has been introduced [11].
The goal was to perform the conditional sign—change gate, eqn. 8, in a faul—tolerant
way. The first step of the scheme is to encode the two qubits involved in the gate redun-
dantely in four qubits. This is done in such way that each qubit is encoded in two qubits
situated on the same ion (the logical qubit is distributed onto four electronic levels). In
particular, the logical values 0 and 1 are encoded into two physical qubits (on a single
ion) as follows

0), = (00) +[11))/V2, 1), = (/01) +]10))/v2. (27)

This is made by single ion operations which are considered error—free. The gate is per-
formed on the codeword as a sequence of four subgates between physical qubits and with
the difference that we tune the lasers such that the ground state |0}, is coupled directly to
the second excited state |2)q,, instead of the |1), state. If a decay takes place, a super-
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position of these states undergoes the transformation a|0)cy + 5 [2)cm — 1) om- After each
subgate an error measurement is realized. Thus if any population is found in the phonon
state 1)y we have detected an error. One can show that the two physical qubits not
involved in the particular subgate carry enough information to reconstruct the state before
the subgate. After the reconstruction the subgate can be performed again. After all four
subgates have been performed succesfully we can reverse the initial coding step in order to
decode the redundant enconding.

Let us consider now the hot scheme. In this case, the main sources of errors in the
realization of the gate will be related to two factors:

(a) The finite size of the wave packets and the small distances between them. In particu-
lar this can cause the following problems: (a.l) ¢§’L might overlap in the time 7y, prevent-
ing us from addressing only one of the wave packets; (a.2) even if there is no overlapping
between the wave packets, it would be almost impossible to focus a laser beam in such
small distances; (a.3) due to the laser spatial profile, different positions within the laser
beam will see different laser intensities.

Let us consider the relevant parameters related to this problem. Associated to the wave
packets of ion 2 at time f) we have two parameters A and d corresponding respectively to
the size of the wave packets and their separation, Eqn. (28). In order to overcome problem
(a.1) it is required that D > A. Other important parameters are those of the laser profile.
This is characterized by the position dependent Rabi frequency £2(x) which takes on a
maximum value €2y and has a width W. In present experiments, due to the impossibility of
focusing laser beams over small distances, this width is expected to be much larger than the
separation. Thus

W>D>A. (28)

Consequently, the laser beam will affect both wave packets @®*, which causes problem
(a.2)

The solution to this problem is to select the laser parameters so that ¢§*L feel different
Rabi frequencies, %%, fulfilling

ol QF
=N+, - =2NT, (29)

with intenger N equal to the number of complete Rabi cycles. On the other hand, we have
to make sure that the whole wavepacket sees basically the same Rabi frequency, so that no
information of the internal state is imprinted in the motional state; i.e. we have to overcome
problem (a.3). According to (28) this requires that

dQ(z)
dx —R,

=2,

A <1, (30)

where z = Z?’L is the position of the center of the wave packets of atom 2 when interacting
with the laser. In order to illustrate the above conditions, we consider the case of a thermal
state, characterized by 7, and 7, = /(2. + 1), the mean phonon number of the center—
of-mass and relative modes. For the laser profile we take a Gaussian
Q(z) = Qoexp [—(z — )*/(2W?)]. We choose the equilibrium point of atom 2 to coincide
with the steepest point of the laser profile, i.e. [ = z./2 + W. The condition (28) can now

be expressed as W > 3v/3 zon/2 > \/fi. + 1,/2 + 3/4 7o taking into account (23). Ac-
cording to the first inequality, we can expand the Gaussian profile 2(x) around z = z./2 up
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to first order. Imposing now the second condition (29) we obtain

L(Zze/z) =N+ 1/4)x, (31)

and W = (4N + 1/2) D. Having this in mind, the first condition (28) can be restated as

AN>>1, 5> /dn.+2m,+3/(3V3). (32)

With this, condition (30) is automatically fulfilled. In summary, the laser parameters have to
be chosen following the conditions (31) and (32).

(b) The nonharmonic corrections to the free Hamiltonian. The fact that the wave packets
would separate considerably, since this seems to be a solution to the above mentioned
problems, would imply that the nonharmonic terms could become important. In order to
single out these effects, we will assume that the action of the laser beam in step (ii) is
ideal. In that case, the errors caused by anharmonicities are independent of the internal
dynamics, which simplifies the analysis. The fidelity of the gate will then be simply given
by the overlap Feor = [(¥(2,) |¥(0))|*. As it should be, if we set Veor =0 we will have
Feor =1 according to (15). Using time—dependent perturbation theory we find
Feor = 1 — (AV)?, where

~ rg . .
V= | dr et Ve e ot (33)
0

and (AV)? = (¥(0)| V2 |¥(0)) — (¥(0)| V |¥(0))*. This fidelity can then be evaluated
analytically for an initial thermal state. Taking into account realistic parameters it seems
that the errors produced by the anharmonicities can be neglected with respect to the ones
due to the finite size effect of the wave packets for small values of the Lamb-Dicke
parameter.

7. Conclusions and Outlook

In this paper we have reviewed two complementary schemes for quantum computation with
trapped ions. We compare now briefly both proposals by listing some of the main features
and differences between them

1. 1¢4) Combined laser cooling techniques are needed. In particular, Doppler cooling to
the Doppler cooling limit followed by sideband cooling to the ground motional state.
1hot) Doppler cooling is the only cooling technique needed.

2. 2.01q) It is necessary to work in the Lamb—Dicke limit, both for laser cooling and for
manipulation of the ions. 2y, )The Lamb—Dicke limit is not needed.

3. 3c0ia) Low intensity laser beams, ie. £2n < v, the so—called weak excitation limit
(where here £ is the Rabi frequency, # denotes the Lamb—Dicke parameter and v the
frequency of the trap). This implies a clock time for the cold gate of
Teod = (192)" > v~ 3hot) The clock time associated to the logic gate is faster, being
typically characterized by the trap oscillation time, i.e. Tpo ~ v < Teod

4. 4.44) Scalability is possible, although technologically demanding. Small processors with
5-10 ions seem to be possible in the near future. 4y,) Scalability to more than three
ions is not possible. On the other hand, the technology associated to the realization of
the logic gate presents fewer technical problems.
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5. Scoiq) Ions are manipulated in a regime similar to quantum electrodynamics and the
physics of generating and manipulating N-particles entangled states in ion traps and
high—Q cavities, i.e. v > Q, see [12]. 540 lons are manipulated in a different regime,
similar to atom interferometry, i.e. v < £, see [13].

The schemes presented in this paper are only a starting point to acquire first experimen-
tal evidences of some of the interesting effects associated with quantum computing. Given
the experimental progress in several laboratories worldwide, we expect that model systems
of ion trap quantum computers with five to ten qubits will be built within the coming years.
These systems will provide the context for a new generation of fundamental tests of quan-
tum mechanics, and for the demonstration of basic elements of particle entanglement, quan-
tum computing, error correction, and quantum communication [14].
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