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A procedure to control the quantum transport between classical regions is proposed. The scheme
exploits the ability to synthesize arbitrary motional states in ion traps. Quantum barriers and passages
to transport can be created selecting the relevant frequencies. This technique is then applied to stabilize
the quantum motion onto classical structures or alter the dynamical tunneling in nonintegrable systems.
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Systems for which predictions can be made using clas-
sical mechanics can show quantum mechanical properties
under suitable experimental conditions. The observables
measured can be of a nonclassical class as in Bell experi-
ments. States can also be chosen to deviate from
classical behavior, an idea that we will exploit in the
present Letter. Despite this, the study of the classical
dynamics continues to be a guide to provide insight into
the nature of quantum systems, specially in the case
of atomic and molecular physics [1]. More recently, a
new class of experiments for which Hamiltonians can be
engineered and detailed properties can be monitored have
allowed us to apply this relation in more detail. Cold
atoms experiments have shown the possibility of inducing
quantum dynamics with a particularly appealing classical
limit, the d-kicked rotor. These experiments observed
dynamical localization, accelerator modes, and only re-
cently the effect of noise and dissipation [2]. In addition
there have been theoretical proposals of experimental
configurations in ion traps to study dynamical localization
[3], revivals [4], and state sensitivity [5,6].

In this Letter we show how to control and moni-
tor quantum transport between two or more classical re-
gions in an ion trap. The control is achieved not only
by engineering the Hamiltonian but most importantly by
state synthesis. To monitor the relevant effects we use
tomography and simpler alternative techniques. Trapped
ions’ advantages to both control and monitor have al-
ready been used for the study of other aspects of quantum
systems, such as the quantum Zeno effect [7], possible
nonlinear variants of quantum theory [8], reservoir engi-
neering [9], and quantum computation [10].

To see the relative contribution of the classical back-
bone and the purely quantum effects consider the Q
distribution that is measured in tomography [11]. Its con-
tinuity equation is of the form [12]

≠Q
≠t

1 �Q,H� 1 Z�V ,Q, t, h̄� � 0 , (1)

with Q�a; t� � j�a jC�t��j2, being ja� a coherent state,
V the potential, and �, � the classical Poisson bracket.
This continuity equation is the classical Liouville equa-
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tion plus a quantum term Z�V ,Q, t, h̄� given by Z �
2

2
h̄ Im��C ja�V �x�2 1 ih̄≠�≠p� �a jC��. An ideal ex-

perimental setup to study the relation between quantum
and classical dynamics would then have the possibility to
control all three dependencies of Z, i.e., the potential, the
quantum state, and an effective Planck constant. More-
over, it should be possible to have measurable quantities
showing the relative importance of classical and quantum
contributions, e.g., the Q distribution itself. All of the
above conditions can be fulfilled in the case of a har-
monically trapped ion. This is possible due to the in-
teraction between the internal (electronic) and external
(vibrational) degrees of freedom of the ion by means of
laser pulses in resonant and nonresonant regimes [13].

Consider the regime where both the classical Liouville
and the quantum terms in the continuity equation in (1)
are relevant. The quantum contribution to the transport
is state dependent and the final flow is diverted from
the classical flow by an amount that depends on the
quantum state. We first pick out the classical backbone
structure and then study how to manipulate the quantum
transport depending on the synthesized state. We need
to construct a family of Hamiltonians that have regular,
mixed, or chaotic phase space. In the trapped ion setup
we make use of the harmonic delta kicked Hamiltonian
[5], describing a harmonic oscillator periodically perturbed
by nonlinear position dependent delta kicks. We consider
a single trapped ion in a harmonic potential [13] (i.e., a
linear ion trap) with two internal levels je� and jg� with
transition frequency v0 interacting with a time dependent
laser pulse of near-resonant light of frequency vL which
is rapidly and periodically switched. For sufficiently large
detuning d � v0 2 vL the excited state amplitude can
be adiabatically eliminated. Assuming that the minimum
of the trap potential coincides with an antinode of the off-
resonant laser standing wave, the Hamiltonian reads [5,14]

H � H0 1 K�cos�2kLx� 1 1	 jg� �gj
X̀

n�2`

d�t 2 nt� ,

(2)

where H0 is the harmonic oscillator Hamiltonian, kL �
2p�l is the laser wave number, t is the time between
© 1999 The American Physical Society
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kicks, and K �
p

p h̄sV2�8D is the kick strength. Here
s is the Gaussian laser beam width, V is the Rabi fre-
quency, and D is the laser detuning. A particularly im-
portant parameter is the so-called Lamb-Dicke parameter
h � kL

p
h̄�2mn, where n is the oscillator frequency and

m is the mass. An effective h̄eff � 2h2�p is obtained af-
ter rescaling to a dimensionless Hamiltonian [14]. Thus
when varying h by changing the trap frequency the h̄eff is
modified.

In the following the relevance of the classical backbone
is shown by predicting the time-averaged quantum Q
function by means of classical theorems. We write the
potential for a phase space region as V � V0 1 V1, with
V0 and V1 the unperturbed and perturbed potentials that in
general have different phase space topologies. The time-
averaged dynamics of an initially synthesized motional
Fock state is shown to be predicted from knowledge of
the classical solution for V0 and the Kolmogorov-Arnold-
Moser (KAM) and the Poincaré-Birkoff theorems [15].
These two theorems in conjunction mean that, increasing
the perturbation V1, the phase space tori break in increasing
irrationality values of the ratio of their winding numbers
r � v1�v2 with v1 and v2 the two frequencies of a given
torus [16]. When the winding number is sufficiently close
to the rational number l�s the torus breaks into alternative
js stable and unstable points, with j, l, s integers [15].

Figure 1(a) shows the classical stroboscopic map for
V0. Following the values of the winding number increas-
ing the perturbation we determine which torus is breaking
first. We thus predict the averaged quantum behavior with
total potential V � V0 1 V1 using only the classical in-
formation from the values of the winding numbers with
V � V0 and the classical theorems. Then a jn� � j7�
Fock state is predicted to have an averaged Q function
with four maxima (minima) on the classically stable (un-
stable) points when increasing the perturbation of the sys-
tem. Figure 1(b) shows the time-averaged Q function

QT � lim
M!`

1
Mt

M21X

m�0

Q�mt� �
X

m

j�a jm�j2 j�C jm�j2,

(3)

with jm� the Floquet states fulfilling Û�t� jm� �
e2iem jm�, where Û�t� is the time evolution operator
referring to one period t and C is a given initial state.
The four predicted maxima are clear in this figure.
Figure 1(c) displays the Q function averaged at three
consecutive times, as it could be measured experimentally
using three tomographic measurements [11] showing the
same structure. The classical stroboscopic map for the
perturbed case in Fig. 1(d) shows clearly that QT reveals
the classical backbone in many details. Any other Fock
state prepared would scan in the same way different
structures of this or alternative classical maps.

We now propose to control the relative relevance of
the quantum and classical terms in (1) by state syn-
FIG. 1. (a) Stroboscopic classical map with k � 0.3. The
rational number to which the winding number approaches
is 1�4 for the initial condition �x,p� � �0.22, 0�. (b) QT
function with k � 0.4 and h � 0.25 (see text). (c) Q function
averaged over three different tomographic measurements after
applying 21, 22, and 23 kicks. All parameters are as before.
(d) Stroboscopic classical map with k � 0.4. nt � 1.8 for all
the cases. x and p are in units of l and mnl in all discussions
and k �

p
2Kh2�h̄.

thesis. We want to prepare a state initially localized
in a classical region A with a barrier or a passage
for transport to a different classical region B. Take
as a starting state a coherent state localized on A,
fA�0�. Its averaged transport to region B, represented
by another state fB, is given by P�jfA�, jfB�� �
limM!`

1
Mt

PM21
m�0 j�fB jfA�mt��j2, that we can write as

P�jfA�, jfB�� �
P

m j�fB jm�j2j �fA�0� jm�j2 using the
Floquet basis. For P�jfA�, jfB�� not to be zero, the states
fA�0� and fB must have nonzero overlap with common
Floquet states denoted as �jm�A>B�. To form a new state
that minimizes, w

2B
A0 , or maximizes, w

1B
A0 , the transport to

region B we eliminate (enhance) from fA�0� the Floquet
components �mA>B� as

jw6B
A0 � � N1�jfA�0�� 6

X

mA>B

rmjm� �m jfA�0��� , (4)

with rm � 0 or 1 when the corresponding weight
j�m jfA�j2 is smaller or greater than a value ctol, re-
spectively, and Ni will be normalization constants from
now on. The value ctol is chosen to be the minimum
possible subject to the condition that the new region A0

is sufficiently close to the initial region of localization A.
We propose then the synthesis of the states

jC6B
A0 � � N2

nexpX

n�0

jn� �n jw6B
A0 � , (5)
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with �jn�� the Fock basis and where we consider only an
experimentally feasible maximum number of Fock states
nexp [17] and amplitudes �n jw6B

A0 � chosen to approximate
the theoretical state (4).

Some comments are necessary: (a) We could use an
initial state localized in region A0 slightly bigger than the
region A of the minimum uncertainty wave packet or an
additional localization in a different region A00. (b) If
we want to modify the transport only to region B and
not to other regions C we have to use rm � 0 in (4) for
the Floquet states that have an important overlap with a
state fC centered on C. (c) The states localized in the
regions A, B, and C do not need in general to be minimum
uncertainty states.

We now discuss a general case of modified transport
properties of a given state and we then study stabilization
and modification of dynamical tunneling as two inter-
esting examples. We want to synthesize a state C

2B
A0

initially localized on �xA,pA� � �0.1, 0.2� that avoids
transport to �xB,pB� � �0.3, 0.3�. We use coherent states
for fA and fB and a value ctol � 0.001 so all the Floquet
states with important overlap with fB have rm � 1 in
(4). An experimentally realizable state with nexp � 10
can be constructed with overlap j�C2B

A0 jw
2B
A0 �j2 � 0.9

to the theoretical state. Despite both wave functions
�a jfA� and �a jC

2B
A0 � being initially localized around A,

with j�fA jC
2B
A0 �j2 � 0.82, it is clear from Figs. 2(a) and

2(b) that their QT functions are very different. The QT

function for C
2B
A0 shows a clear hole at the location B, in

contrast to the minimum uncertainty state fA. The cor-
relation function P�mt� � j�fB j Ûm�t� jF�j2 is shown
in Fig. 2(c) for F � fA and C

2B
A0 , the latter showing a

significant decrease. These correlation functions can
be measured experimentally by applying a displacement
associated to fB and then measuring the Fock ground state
population both steps possible to implement in a trap [18].
Successful results can also be obtained for the state C

1B
A0

that presents a maximum on region B in QT ; see Fig. 2(c).
Figure 2(d) shows the classical map together with a
small black box with an area of h̄eff � 2h2�p2 
 0.05.
While there is no classical flow between points A and B a
Gaussian state manifests quantum transport to B. With
the state synthesis procedure just shown we are able to
increase or decrease the transport controlling in this way
how quantum or classical the state behaves concerning
this transport.

Particular instances of the states C
6B
A0 are of special

relevance. The stabilization of the vibration of the ion
can be understood as a modified transport problem. In
this case A is the region of localization and B is the rest
of the phase space and we are interested in constructing
a state C

2B
A0 that we will name for the stabilization case

as C
sta
A0 . An alternative way to understand expression

(5) for this situation now in terms of the dynamics is
given in the following. The autocorrelation function
of a typical state j�fA�0� jfA�t��j2 will show an initial
3168
FIG. 2. (a) QT function for fA coherent state. (b) QT func-
tion for the modified C

2B
A0 state. (c) Upper plot: Correlation

function for fA, C
2B
A0 (dotted line) and C

1B
A0 (dashed line)

with fB . Lower plot: Autocorrelation function for C
sta
A0 state

and fA coherent state (dotted line). (d) Stroboscopic clas-
sical map. The small black box has an area of effective
h̄eff � 2h2�p2 
 0.05. (e) Q for an initial coherent state cen-
tered at �xA,pA� � �0, 0� after two kicks. (f ) Q for the stabi-
lized state C

sta
A0 . All figures were obtained with the parameters

k � 2.7, nt � 1.7, and h � 0.5.

maximum (however small) at tM . 0. We can now
clean the state fA of the Floquet components that do not
contribute to this maximum and therefore create a new
state stabilized on A. Note first that a particular Floquet
state jm0� can be obtained from the time-dependent vector
jfA�t�� �

P
m jm� �m jfA�0�� exp�2iemt� (a solution of

the Schrödinger equation only for t � mt) as jm0� ~

limT!`GT ,m0 with GT ,m0 �
RT

2T dt jfA�t�� exp�iem0t�.
A state related to the short term dynamics is
then GtM ,v0 with v0 the value of v that makes
S�v� �

RtM
2tM dt �fA�0� jfA�t�� exp�ivt� a maximum

[19]. This state GtM ,v0 can then be approximated as

jwsta
A0 � � N3

X

msta

jm� �m jfA�0�� , (6)

with msta the Floquet eigenfrequencies in the interval
v0 2

p

tM , v , v0 1
p

tM with a weight j�m jfA�0��j2 .

asta. The value of asta is chosen maximum with the re-
quirement that the state w

sta
A0 has a tolerable localization

around A. The state C
sta
A0 in (5) synthesized to approxi-

mate w
sta
A0 will then show an initial localization around A



VOLUME 83, NUMBER 16 P H Y S I C A L R E V I E W L E T T E R S 18 OCTOBER 1999
because it selects the short term dynamics and will recur
continuously to A because it is made of very few selected
Floquet states. In fact there are several maxima in S�v�
and we can choose the value v0 with a minimum number
of Floquet states maximizing stabilization in this way.

Using this stabilization procedure we have found
enhanced localization onto KAM tori, islands of size
smaller than the effective h̄, cantori, or unstable periodic
orbits effects [20]. The following example of enhanced
localization onto a classical unstable orbit can be
realized experimentally. We consider the stroboscopic
map in Fig. 2(d). Figure 2(e) shows the Q function for
an initial minimum uncertainty state, fA, after two kicks
centered at �xA,pA� � �0, 0�. The state is spread from
an unstable periodic orbit along the unstable manifold.
The stabilization is achieved in this case with a state C

sta
A0

centered on the middle of the chaotic region at �0, 0� with
j�wsta

A0 jC
sta
A0 �j2 � 0.72 and nexp � 12, a single Floquet

state. The stabilization achieved is clearly seen in the
measurable autocorrelation function [18]; see Figs. 2(c)
and Fig. 2(f) for the Q function of such a stabilized
state. This example constitutes a realizable experiment to
directly observe a quantum scar [21].

As a final example we show how to increase the dy-
namical tunneling associated to classically forbidden re-
gions, see Fig. 3(a). An initial minimum uncertainty state
located at �xA,pA� � �20.6, 0� has dynamical tunneling
and contributions from an unstable periodic orbit located
at �xB,pB� � �20.5, 0.3�. A state (4) eliminating the
contributions of B is mainly composed of three Floquet
doublets reflecting the oscillations due to quantum tunnel-
ing. The autocorrelation function is shown in Fig. 3(b)
for a state (5) with j�wB

A0 jC
B
A0�j2 � 0.85. This can be

measured by applying displacements associated to the
initial regions of localization or more directly by inverting
the unitary process which created the initial state. An
example of stabilization in this case is choosing a state
made of a single doublet where j�wsta

A0 jC
sta
A0 �j2 � 0.8. In

this case the oscillations due to the tunneling are more
clearly reflected. Both states with nexp � 25 since their
location in phase space implies higher Fock state contri-

FIG. 3. (a) Stroboscopic classical map with k � 1.2 and
nt � 2p�3. (b) Autocorrelation function for an initial coher-
ent state, Floquet doublet (dotted line), and jC

B
A0 � state (dashed

line). Parameters as before with h � 0.5. The area of the
black box is h̄eff 
 0.05.
butions than previous cases. Choosing different doublets
would give rise to different tunneling times. Finally
notice that by increasing nexp , i.e., the overlap to the
theoretical state, all features discussed in previous
examples will be more dramatically shown [17].

In conclusion, we have presented a method to control
quantum transport between classical regions by making
use of the ability to synthesize arbitrary states of motion
in an ion trap. Within this framework, we have studied
the relevance of the classical backbone of a quantum
system, the stabilization of motion, and the modification
of dynamical tunneling in nonintegrable systems.
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