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Systemic studies of noise I

Previous studies limited to very specific genes, generalizability?

Experiment: 43 S. cerevisiae proteins under 11 experimental conditions.
In contrast to previous studies there was no synthetic modification
of transcription/translation rates.

- Focused on correlation of noise and mean expression level (abundance)
- Different mean-expression levels associated to different gene classes:

- stress

- proteasome

- ergosterol

- rRNA processing

MAIN RESULT: Expression variance roughly proportional to mean.



Noise vs. mean protein abundance

Cells expressing GFP-fused version of each prot.
11 environmental conditions

Flow citometry measurements
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Noise vs. mean protein abundance

points before E change
(steady state conditions)

different conditions

Auto-fluorescence
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Noise vs. mean protein abundance; theoretical analysis

qubal factors
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- Is noise driven by global factors explaining this trend?
- Is noise driven by mRNA fluctuations explaining this trend?

- Is noise driven by promoter fluctuations explaining this trend?



Can global factors explain the variance/abundance correlation?

-Protein production depend on level of independent upstream component |X

X Global X Module
IRt
w’t"" gy
W,J
(¢ o ] | x* &Wﬁ‘xhx

5x10° 5x 104 5x10° 5x104

spontaneous x-influence
1 ] H? H,,/t

;qf) Ri— X —§+§};x>< ;p X pp/ P
Hpep (p)i " 3y Hp/TptHue/ T

EussmmsmmsmmsmmmmmnmanE T h e e e e e A E R E AR AR AR EEEEAEE A AR AR AR R R RN
.
.
.
.
.
.
.
.
.
.
.
.
.
.
‘e
.
.
.
.

* Average lifetimes
“
Elasticities; sharpess of nonlinearities;
Susceptibility to upstream noise

Noise in upstream comp.



Can global factors explain the variance/abundance correlation?
(specific pathway)

Protein
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Can mRNA noise explain the variance/abundance correlation?

Protein

n% = C/p), with C = 1,200
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Can mRNA noise explain the variance/abundance correlation?

Protein

100 -
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—> average prot. per transcript similar for all genes/conditions in data
mean C =~ 1300
- differences in prot. abundance mainly due to chances in transcription

- finally, gene activation could also play a role in a regime where genes
are mostly OFF. These mechanisms are however not sufficiently

characterized



Intrinsic noise

- Two-reporter assays for 4 proteins of intermediate (PWP1, TPS1, PRE9 )
and high abundance (ACS2)
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- For proteins of intermediate abundance = substancial contribution of
internal noise.



Systemic studies of noise II

Previous studies limited to very specific genes, generalizability?

Experiment: >2500 S. cerevisiae proteins in rich and minimal media
In contrast to previous studies there was no synthetic modification
of transcription/translation rates.

- Focused on correlation of noise and mean expression level (abundance)

MAIN RESULT: Noise in protein expression is dominated by stochastic
production/destruction of mRNAs
Dramatic protein-specific differences in noise



Factors contributing to noise
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Factors contributing to noise

Cellular properties correlated with variation

Property Test =log,(P-value)
Gene proximity Dist. vs DM or CV 0.2=2.7
mRNA copy number mRNA per cell vs CV 109.0

mRNA half-life mRNA t, , vs DM 3.0

mRNA variation mRNA ¢ vs DM
CAl score CAl vs DM 3.0
Ribosome density Ribos. dens. vs DM . 65
No. of proteins/mRNA No. prot./mRNA vs DM NSO
Protein copy number Protein per cell vs CV 321.0
Protein interactions No. PPl vs DM 0.5

Correlation 0-3 35 |50 IE2N



