A brief intro to social dilemmas ... and how bacteria and humans solve them

Juan F Poyatos Logic of Genomics Systems Laboratory (CNB-CSIC)

Master in Biophysics 2012/2013 Universidad Autónoma de Madrid Madrid, Spain Feb 25-27, 2013

Multilevel cooperation

Migration and differential fitness; synthetic design

The not-so-easy-to-test Hamilton's rule

0.2

0.4

0.6

inital (p) and final (p'= $p+\Delta p$) global producer proportions

8.0

Controlling the growth difference between Ps and nPs

High variability of cheater frequency between groups

Facultative cheating in yeast

By limiting the histidine in the media we can impose a cost on the cooperator strain because it is a histidine auxotroph

Cells grow faster at high density

Cheaters and cooperator can invade each other

Equilibrium fraction of cooperators and growth decrease as cost of cooperation increases (by reducing [histidine])

Coexistence C and D

It is a 'snow-drift' game! Coexistence C and D

But the linear 'sucrose game' does not lead to coexistence ...

Payoff_C =
$$\epsilon$$
 + f (1- ϵ) -c

Payoff_D = f (1- ϵ)

ε<c → Defectors invade ε>c → Cooperators invade

One needs non-linear benefits!

Payoff_D =
$$f(1-\epsilon) \rightarrow Payoff_D = [f(1-\epsilon)]^{\alpha}$$

Glucose changes it all!

Swarming; a collective form of surface motility resting on a PG

LoGS lab

rhlA can use the secretions of others to swarm yet has no measurable competitive advantage!?

Bio-surfactants are only produced when the cells are not dividing, due to *nitrogen limitation*, and use carbon source that under these circumstances cannot be use for growth

Bio-surfactant secretion becomes exploitable in a inducible strain lacking the native regulation

wt (green) vs. rhlA (red)

Inducible strain (green; *rhlA*⁻ P_{BAD}*rhlAB*) vs. *rhlA*⁻ (red)

Cells tend to redirect the non-limiting carbon flux

Plasticity as ecological rationality

Cheater invasions can lead to recovery

Different heuristics associated to different environments

Are people conditionally cooperative?

people who are willing to contribute more to a public good the more others contribute

Experiment

- 4 individuals deciding how to spend 20 tokens into a socalled 'project'
- Two classes of decision 1)unconditional or 2)conditional contribution (for each average contribution how much am I willing to contribute?)
- Experiment played once
- -1 out of 4 chosen to use decision class 2) based on unconditional decisions (class 1) of the other 3.

The decline of cooperation

Are people using <u>heuristics</u>?

We consider two systems of reasoning (dual-process framework)

- <u>System 1</u>: fast, intuitive, heuristic-based, parallel processing, 'cheap'
- <u>System 2</u>: slow, reflexive, associative-based, serial processing, costly

How would these two systems influence cooperative decision-making?

Faster decisions are more cooperative

One-shot public good games with groups of 4 participants

Faster decisions are more cooperative

Inducing intuitive thinking promotes cooperation

Faster decisions are more cooperative

Priming modifies cooperation

It might be better for cooperation if we split in groups

Don't share all your public goods, keep a bit for yourself!

When in need ... move!

This was not the most optimal decision but it sure was the most ecologically rational

Don't think ... and cooperate!