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day II: modeling noise

- Two-step gene expression model

- Translational Bursting
- Gillespie’s algorithm
- Langevin equations



StochasticStochastic dynamicsdynamics ofof gene gene expressionexpression, , summarysummary

- Genes are expressed by means of chemical reactions

- Chemical reactions are stochastic processes (collisions, etc)

- Gene expression is noisy: intrinsic noise (fluctuating reaction rates) TODAY

extrinsic noise (molecules involved in gene expression)



A simple A simple modelmodel ofof gene gene expressionexpression, , summarysummary

Poisson process (birth and death)

- protein produced on average every

1/k seconds (birth)

- protein decays with rate δ (death)

What is the steady state distribution of this model?

What is noise then?  



A simple A simple modelmodel ofof gene gene expressionexpression, , summarysummary

Recall; a new framework, the master equation

Some comments:

- All moments of the distribution p(n) can be derived from it

- It is a linear equation in p(n). 

- Solving the master equation can be done for simple systems, 

however only normally at steady state.

- In connection with experiments, p(n) would represent the 

fraction of cells having n copies of some given protein



A simple A simple modelmodel ofof gene gene expressionexpression, , summarysummary

Poisson distribution

mean = 

variance σ2 = 

What is noise then?

definition-1 (coe. variat.) = 

definition-2 (Fano factor) = (= 1, Poisson distribution

mean = variance )

(= ,              Poisson distribution, noise

increases as the number of

molecules decreases)

Macroscopic statistics

standard deviation



RecoveringRecovering the the deterministicdeterministic lawlaw

Equation of the mean; emergence of deterministic law



Considering that

We can rewrite the deterministic equation as

And thus

pseudofirst-order reaction

first order reaction

RecoveringRecovering the the deterministicdeterministic lawlaw



A more A more detaildetail modelmodel ofof gene gene expressionexpression

Deterministic model



P(kR reaction) = rk δt

P(δR reaction) = mR r
δ

δt

P(kP reaction) = mR r
κ

δt

P(δP reaction) = nP r
δ

δt

How does the probability of having, say, m mRNA

molecules and n P molecules, p(m,n), change with

time?



r
κ
’s as k’s to simplify notation

(this could also imply that V = 1)

P(m,n+1)

P(m-1,n) P(m,n) P(m+1,n)

P(m,n-1)

mkP

nδP

kR

mδR

(n+1)δP

(m+1)δR

kR

mkP



Equation of the mean; emergence of deterministic laws

note first, a useful equation for a given function f(n,m)

thus, we get
this is the equation the very

same equation we obtained for

the simple model, i.e., it implies

steady state Poisson 

statistics for mRNA

what kind of protein macroscopic

steady state statistic characterizes

protein dynamics?



we make use of the following equations ...

... to get the final expressions for the macroscopic statistics

Fano Protein =

Fano mRNA = 1 protein half-lifetime ~ hours

mRNA half-lifetime ~ minutes

thus

and

transcription efficiency does not influence noise

translation efficiency

influences noise



= 10

= 1

IndependentlyIndependently adjustadjust average average andand dispersiondispersion ofof proteinprotein



““RandomRandom burstsbursts modelmodel””

b =



Master Master equationsequations andand gene gene expressionexpression

- Genes are generally regulated by complex nonlinear functions. Analitical

studies become difficult.

- Two types of approximation methods

1) Numerical Simulation � Gillespie’s algorithm

2) Perturbation Methods � Langevin equations, ...



SimulatingSimulating StochasticStochastic ReactionsReactions

Two key questions:   When will the next reaction occur?

What kind of reaction will it be?

P(τ,µ)dτ = probability that, given the state (X1,...XN) at time t, 

the next reaction in V occurs in the infinitesimal time interval 

(t + τ, t + τ + dτ) and it will be a Rµ reaction.

P(τ,µ)dτ = P0(τ) aµdτ, 

here,

P0(τ) : the probability that no reaction happens

in the time interval (t, t + τ) 

aµdτ : the probability that reaction 

Rµ will happen in  the time interval (t + τ, t + τ + dτ)

propensity function, e.g.,  n1n2 r



The function P0(t): (no reaction)

P0(t+dt) = P0(t)( 1 – a0 dt) a0 = ∑j=1,M aj

(P0(t+dt) – P0(t) )/dt = -a0 P0(t)

d P0 /dt = -a0 P0(t)

P0(t) = exp(-a0t)

The reaction probability density function:

P(τ,µ)dτ = P0(τ) aµdτ = aµ exp(-a0τ) dτ µ = 1,...,M    τ 0(0,+ ∞)

It is possible to write P(τ,µ) as a product of  P(τ) and P(µ):

P(τ,µ)dτ = aµ exp(-a0τ) dτ = (aµ / a0) a0 exp(-a0τ) dτ

P(µ) = (aµ / a0) 

P(τ) = a0 exp(-a0τ) dτ

Therefore, we may determine the waiting time for the next reaction by generating two 

random numbers following distributions P(τ) and P(µ).

Note that the algorithm is a rigurous consequence of the Fundamental Hypothesis



Input the desired values for the stochastic rate constants c1,...,cM. Set the initial 

molecular population numbers X1,...,XN and set the time variable t to 0. Initialize the 

unit-interval random number generator (note UiRN distributions P(τ) and P(µ)).

For the current state X1,...,XN calculate and store M values of propensity functions a1 = 

h1c1,...,aM = hMcM. Accumulate and store the sum of propensity functions a0=∑j=1,Maj

Generate two random numbers r1, r2 0 (0,1) using UiRN. Calculate τ = (1/a0)ln(1/r1)

and take µ to be that integer for which ( a1 + a2 + ,..., + aµ-1 ) < r2a0 ≤ ( aµ +, ..., + aM )

Update the state of the system by executing one elementary reaction Rµ and increase 

time of the simulation t by τ. 

Finish

Gillespie’s algorithm
Step 0

Step 1

Step 2.

Step 3.

t < Tmax



MATLAB MATLAB MATLAB MATLAB codecodecodecode 2222

% .. code1stoch.m
% .. simple gene expression stochastic and deterministic

clear all
k = 25;
delta = 1;

% .. stochastic eqs. Gillespie's algorithm
P = 0;
Pstochastic = P;
tmax = 10;
t = 0;
tspan = t;



while t < tmax

% .. a's

a = [k, delta*P(1)];

a0 = sum(a);

% .. determine time of next reaction

r1 = rand;

tau = -log(r1)/a0;

t = t + tau;

% .. determine nature of next reaction

r2 = rand;

acumsum = cumsum(a)/a0;

chosen_reaction = min(find(r2 <= acumsum));

if chosen_reaction == 1;

P(1) = P(1) + 1;

else

P(1) = P(1) - 1;

end

tspan = [tspan,t];

Pstochastic = [Pstochastic;P];

end



% .. deterministic eqs.

P0 = 0;

options = [];

[t P] = ode23(@code1equations,tspan,P0,options,k,delta);

% .. plot

subplot(211)

plot(t,P,t,Pstochastic,'r')

legend('deterministic','stochastic')

axis([0 tmax 0 max(Pstochastic)]);

subplot(212)

Pst = Pstochastic;

hh = histc(Pst,min(Pst):max(Pst));

bar(min(Pst):max(Pst),hh/sum(hh))

meanhist = 24.3909

varihist = 26.7338

fano = 1.0961



LangevinLangevin equationsequations

- Developed originally to the study of Brownian motion

- Alternative mathematical framework to that of the Master Equation

- Better suited for an intermediary (“not very noisy”) regime

- Based on adding explicitely noise terms to the deterministic (macroscopic) 

equations

- Need to characterize the noise distribution of the added noise



,            added stochastic variables. 

These equations are fully specified when the probability

distributions for the stochastic variables are given.

Valid to describe an intermediate situation where fluctuations

are important even though the number of particles is big enough.



what are the properties of ?

- we would like to know mean, variance, characteristic fluctuation times, ... 

Fluctuation time:

we can ask how much correlates the variation of with respect to its mean:  

autocorrelation function

at equal times (t1=t2) we recover the variance.

Often there exists a characteristic time          for which

is known as the autocorrelation time



White White noisenoise

Langevin originally applied to brownian motion: no reason why thermal fluctuations

should favour a particular reaction:

defined such that

thus,  

collision time is faster than time-scale of change of molecule numbers,

noise is uncorrelated

noise strength, variance at equal times

very small autocorrelation times: 



- noise variable with zero autocorrelation time

- white? 

all frequencies contribute equally

Color noise

- noise variable with finite autocorrelation time

Stochastic differential equations are very irregular, modified numerical methods

to solve them: one to the simplest Euler-Maruyana method

White noise:


