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OutlookOutlook

- WHATWHAT is stochastic dynamics?

- WHYWHY cellular stochastic dynamics?

- HOWHOW do we deal with stochastic dynamics?

THEORY + EXPERIMENTSTHEORY + EXPERIMENTS



day I



Stochastic motionStochastic motion

- motion generated by random forces, 
e.g., forces randomly applied in time

- to describe a stochastic system 
we need probabilities

- chemical systems are intrinsically 
stochastic (noisy), specially when a 
small pool of reactants is involved



is is gene gene expression noisyexpression noisy??

- Many molecules that take part in gene expression (including DNA
and important regulatory molecules such as the enzyme polymerase) 
act at extremely low intracellular concentrations (low copy numbers)

- Gene expression as a series of biochemical reactions experiences
“surprising” things when one takes the discreteness of molecule 
number seriously

Escherichia Coli (E.coli) numbers
2µm long
1µm diameter

V = πr2l = π/2 10-15 liters
[RNA Polymerase] ~ 100nM = 100 molecules

(1nM ~ 1 molecule) 



Biochemical noiseBiochemical noise

-consider a simple gene expression system
(unregulated gene)

a common approach is to describe these 
reactions by means of differential reaction-
rate equations

This approach assumes that the time evolution of such reaction is 
both continuous and deterministic

continuous? molecule number changes in discrete ways

deterministic?   impossible to predict the motion of (classical) molecules due to the 
ignorance of positions and velocities of all components of the 
system

however in many cases of course the time evolution of a chemically reacting system
can, to a very acceptable degree of accuracy, be treated as a continuous, deterministic
process

production

first order degradation



MATLAB code 1

% .. code1.m
% .. simple gene expression deterministic equations

clear all
k = 10;
delta = 1;

tspan = [0 10];
P0 = 0;
options = [];
[t P] = ode23(@code1equations,tspan,P0,options,k,delta);

% .. code1equations.m
% .. rate equations for code1

function dPdt = code1equations(t,P,k,delta)

dPdt = [k - delta*P(1)];



large number of molecules
deterministic approximation works

small number of molecules
deterministic approximation fails

large protein fluctuations



Stochastic description of chemical reactionsStochastic description of chemical reactions

Recall: 
For a stochastic system it is not possible to determine exactly the state of the
system at later times given its state at the current time.
We must thus deal with probabilities.

Basis of the stochastic formulation: a chemical reaction occurs 
when molecules collide in an appropiate way

- Molecular collisions: random microscopic events



Stochastic description of chemical reactionsStochastic description of chemical reactions

Vcoll – Collision volume. The 
molecules M2 which are within 
collision volume will be hit by a 
particular molecule M1 in the next 
time interval δt.

M1(r1)

M2(r2)

v12δt

r1 + r2

Vcoll = v12δt π (r1 + r2)2



P (a given M1 and M2 collide) =  
v12δt π (r1 + r2)2

V

P (a M1 and M2 molecule collide) = n1 n2

v12δt π (r1 + r2)2

V

P (a M1 and M2 react) = n1 n2 δt = n1 n2  rδtv12 R π (r1 + r2)2

V
probability that a given M1
and M2 react in unit time (r)

and finally

this is the fundamental hypothesis from which we derive both the Master Equation and
the Stochastic Simulation approaches.

units of inverse time 

diffusion-limited R close to one always



The The Master Master EquationEquation
The stochastic framework considers the discrete number of molecules whose state changes
probabilistically

Recall our previous simple gene expression model

P(k reaction) = rk δt

P(δ reaction) = nP rδ δt

How does the probability of having,
say, n P molecules, p(n), change with time?

Thus, we go from reaction rates to 
reaction probabilities per unit time



P(n-1) P(n) P(n+1)
rk δt rk δt

(nP + 1)rδ δtnPrδ δt

and thus we get in the limit δt     0



Some comments:

- All moments of the distribution p(n) can be derived from it 
- It is a linear equation in p(n). 
- Solving the master equation can be done for simple systems, 
however only normally at steady state.

- In connection with experiments, p(n) would represent the 
fraction of cells having n copies of some given protein

Equation of the mean; emergence of deterministic law



Considering that

We can rewrite the deterministic equation as

And thus
pseudofirst-order reaction

first order reaction



Steady State

and 

then

is constant (independent of n). 

further, considering that                                this constant is zero

thus

since we get

the steady state distribution is the Poisson Distribution



Poisson distribution

mean = 

variance  σ2 = 

What is noise then?

definition-1 (coe. variat.) = 

definition-2 (Fano factor) = (= 1, Poisson distribution
mean = variance )

(= ,              Poisson distribution, noise
increases as the number of
molecules decreases)

Macroscopic statistics

standard deviation



large number of molecules
deterministic approximation works

small number of molecules
deterministic approximation fails

large protein fluctuations

n1 = .014
n2 = 1 

n1 = .2
n2 = 1 



Master Master equationsequations andand gene gene expressionexpression

- Genes are generally regulated by complex nonlinear functions. Analitical
studies become difficult.

- Two types of approximation methods

1) Numerical Simulation Gillespie’s algorithm

2) Perturbation Methods Langevin equations, ...



Simulating Stochastic ReactionsSimulating Stochastic Reactions

Two key questions:   When will the next reaction occur?
What kind of reaction will it be?

P(τ,µ)dτ = probability that, given the state (X1,...XN) at time t, 
the next reaction in V occurs in the infinitesimal time interval 
(t + τ, t + τ + dτ) and it will be a Rµ reaction.

P(τ,µ)dτ = P0(τ) aµdτ, 

here,
P0(τ) : the probability that no reaction happens

in the time interval (t, t + τ) 
aµdτ : the probability that reaction 

Rµ will happen in  the time interval (t + τ, t + τ + dτ)

propensity function, e.g.,  n1n2 r



The function P0(t): (no reaction)
P0(t+dt) = P0(t)( 1 – a0 dt) a0 = ∑j=1,M aj
(P0(t+dt) – P0(t) )/dt = -a0 P0(t)

d P0 /dt = -a0 P0(t)
P0(t) = exp(-a0t)

The reaction probability density function:
P(τ,µ)dτ = P0(τ) aµdτ = aµ exp(-a0τ) dτ µ = 1,...,M    τ 0(0,+ ∞)

It is possible to write P(τ,µ) as a product of  P(τ) and P(µ):
P(τ,µ)dτ = aµ exp(-a0τ) dτ = (aµ / a0) a0 exp(-a0τ) dτ
P(µ) = (aµ / a0) 
P(τ) = a0 exp(-a0τ) dτ

Therefore, we may determine the waiting time for the next reaction by generating two 
random numbers following distributions P(τ) and P(µ).

Note that the algorithm is a rigurous consequence of the Fundamental Hypothesis



Input the desired values for the stochastic rate constants c1,...,cM. Set the initial 
molecular population numbers X1,...,XN and set the time variable t to 0. Initialize the 
unit-interval random number generator (note UiRN distributions P(τ) and P(µ)).

For the current state X1,...,XN calculate and store M values of propensity functions a1 = 
h1c1,...,aM = hMcM. Accumulate and store the sum of propensity functions a0=∑j=1,Maj

Generate two random numbers r1, r2 0 (0,1) using UiRN. Calculate τ = (1/a0)ln(1/r1)
and take µ to be that integer for which ( a1 + a2 + ,..., + aµ-1 ) < r2a0 ≤ ( aµ +, ..., + aM )

Update the state of the system by executing one elementary reaction Rµ and increase 
time of the simulation t by τ. 

Finish

Gillespie’s algorithm
Step 0

Step 1

Step 2.

Step 3.

t < Tmax



MATLAB code 2

% .. code1stoch.m
% .. simple gene expression stochastic and deterministic

clear all
k = 25;
delta = 1;

% .. stochastic eqs. Gillespie's algorithm
P = 0;
Pstochastic = P;
tmax = 10;
t = 0;
tspan = t;



while t < tmax

% .. a's

a = [k, delta*P(1)];

a0 = sum(a);

% .. determine time of next reaction

r1 = rand;

tau = -log(r1)/a0;

t = t + tau;

% .. determine nature of next reaction

r2 = rand;

acumsum = cumsum(a)/a0;

chosen_reaction = min(find(r2 <= acumsum));

if chosen_reaction == 1;

P(1) = P(1) + 1;

else

P(1) = P(1) - 1;

end

tspan = [tspan,t];

Pstochastic = [Pstochastic;P];

end



% .. deterministic eqs.

P0 = 0;

options = [];

[t P] = ode23(@code1equations,tspan,P0,options,k,delta);

% .. plot

subplot(211)

plot(t,P,t,Pstochastic,'r')

legend('deterministic','stochastic')

axis([0 tmax 0 max(Pstochastic)]);

% .. histogram, example of matlab use

subplot(212)

vv = Pstochastic(find(t>3));

his = min(vv):max(vv);

histovv = length(his);

cc = 0;

for n = his

cc = cc + 1;

histovv(cc) = length(find(vv == n));

end

histovv = histovv/sum(histovv);

bar(his,histovv)

meanhist = sum(his.*histovv)

varihist = sum(his.*his.*histovv) - meanhist*meanhist

fano = varihist/meanhist
meanhist = 24.3909

varihist = 26.7338

fano = 1.0961


