
II Master in Biophysics
Universidad Autónoma de Madrid
Nov 8-12/2004

Noise in Gene Expression

http://bioinfo.cnio.es/~jpoyatos/



Biological question

how does gene expression work in cells?

main goal of the course

a combined approach
to understand Biology

experiments

computer simulationstheoretical approaches

biological question



day I



What is gene “expression” anyway?

- A gene (a piece of DNA) expresses itself when it produces 
its own distinct protein product, how?, two steps are needed

note that genes can be transcripted
or translated with different efficiencies/rates



how does gene expression work in cells?

such fundamental process should be well regulated, 
i.e., it should be adjusted in a deterministic clockwise fashion 

or ... maybe not?



is gene expression noisy? 

- Many molecules that take part in gene expression (including DNA
and important regulatory molecules such as the enzyme polymerase) 
act at extremely low intracellular concentrations (low copy numbers)

- Gene expression as a series of biochemical reactions experiences
“surprising” things when one takes the discreteness of molecule 
number seriously

Escherichia Coli (E.coli) numbers
2µm long
1µm diameter

V = πr2l = π/2 10-15 liters
[RNA Polymerase] ~ 100nM = 100 molecules

(1nM ~ 1 molecule) 



Biochemical noise

-consider a simple gene expression system

a common approach is to describe these 
reactions by means of differential reaction-
rate equations 

This approach assumes that the time evolution of such reaction is 
both continuous and deterministic

continuous? molecule number changes in discrete ways

deterministic? impossible to predict the motion of (classical) molecules due to the 
ignorance of positions and velocities of all components of the 
system

however in many cases of course the time evolution of a chemically reacting system
can, to a very acceptable degree of accuracy, be treated as a continuous, deterministic
process

production

first order degradation



MATLAB code 1

% .. code1.m
% .. simple gene expression deterministic equations

clear all
k = 10;
delta = 1;

tspan = [0 10];
P0 = 0;
options = [];
[t P] = ode23(@code1equations,tspan,P0,options,k,delta);

% .. code1equations.m
% .. rate equations for code1

function dPdt = code1equations(t,P,k,delta)

dPdt = [k - delta*P(1)];



large number of molecules
deterministic approximation works

small number of molecules
deterministic approximation fails

large concentration fluctuations



Can we measure experimentally such (intrinsic) noise?

- A single-copy chromosomal gene with an inducible
promoter was introduced in Bacilus subtilis

gfp
inducible
promoter

point mutations in 
ribosomal binding site 
(RBS) and initiation 
codon of gfp 

promoter induction
via IPTG or point 
mutations in promoter

How to vary rates
of transcription/translation?



promoter induction
via IPTG or ...



... or point 
mutations in promoter

point mutations in 
ribosomal binding site 
(RBS) and initiation 
codon of gfp 



GFP expression level is measured for single cells
in a bacterial population using flow cytometry

Expression level vary from cell to cell (phenotypic noise) as
a consequence of molecular fluctuations within single cells
(biochemical noise) 



translational efficiency
vs.

transcriptional efficiency

increase in efficiency

increase in efficiency

translation

transcription

Can we understand this behaviour in theoretical terms?



day II



Stochastic description of chemical reactions
Recall: For a stochastic system it is not possible to determine exactly the state of the

system at later times given its state at the current time.
We must thus deal with probabilities.

Basis of the stochastic formulation: a chemical reaction occurs 
when molecules collide in an appropiate way

- Molecular Collisions: random microscopic events

Vcoll – Collision volume. The 
molecules M2 which are within 
collision volume will be hit by a 
particular molecule M1 in the next 
time interval δt.

M1(r1)

M2(r2)

v12δt

r1 + r2

Vcoll = v12δt π (r1 + r2)2



P (a given M1 and M2 collide) =  
v12δt π (r1 + r2)2

V

P (a M1 and M2 molecule collide) = n1 n2

v12δt π (r1 + r2)2

V

P (a M1 and M2 react) = n1 n2 δt = n1 n2  rδtv12 R π (r1 + r2)2

V
probability that a given M1
and M2 react in unit time (r)

and finally

this is the fundamental hypothesis from which we derive both the Master Equation and
the Stochastic Simulation approaches.

units of inverse time 

diffusion-limited R close to one always



The Master Equation
The stochastic framework considers the discrete number of molecules whose state changes
probabilistically

Recall our previous simple gene expression model

P(k reaction) = rk δt

P(δ reaction) = nP rδ δt

How does the probability of having,
say, n P molecules, p(n), change with time?

Thus, we go from reaction rates to 
reaction probabilities per unit time



P(n-1) P(n) P(n+1)
rk δt rk δt

(nP + 1)rδ δtnPrδ δt

and thus we get in the limit δt     0



Some comments:

- All moments of the distribution p(n) can be derived from it 
- It is a linear equation in p(n). 
- Solving the master equation can be done for simple systems, 
however only normally at steady state.

- In connection with experiments, p(n) would represent the 
fraction of cells having n copies of some given protein

Equation of the mean; emergence of deterministic law



Considering that

We can rewrite the deterministic equation as

And thus
pseudofirst-order reaction

first order reaction



Steady State

and 

then

is constant (independent of n). 

further, considering that                                this constant is zero

thus

since we get

the steady state distribution is the Poisson Distribution



Poisson distribution

mean = 

variance  σ2 = 

What is noise then?

definition-1 = 

definition-2 (Fano factor) = (= 1, Poisson distribution)

(= ,              Poisson distribution, noise
increases as the number of
molecules decreases)

Macroscopic statistics

standard deviation



large number of molecules
deterministic approximation works

small number of molecules
deterministic approximation fails

large concentration fluctuations

n1 = .014
n2 = 1 

n1 = .2
n2 = 1 



Simulating Stochastic Reactions

Two key questions:   When will the next reaction occur?
What kind of reaction will it be?

P(τ,µ)dτ = probability that, given the state (X1,...XN) at time t, 
the next reaction in V occurs in the infinitisemal time interval 
(t + τ, t + τ + dτ) and it will be an Rµ reaction.

P(τ,µ)dτ = P0(τ) aµdτ, here P0(τ) is the probability that no reaction happens
in the time interval (t, t + τ) and aµdτ is the probability that reaction 
Rµ will happen in  the time interval (t + τ, t + τ + dτ)

propensity function, e.g.,  n1n2 r



The function P0(t):
P0(t+dt) = P0(t)( 1 – a0 dt) a0 = ∑j=1,M aj
(P0(t+dt) – P0(t) )/dt = -a0 P0(t)

d P0 /dt = -a0 P0(t)
P0(t) = exp(-a0t)

The reaction probability density function:
P(τ,µ)dτ = P0(τ) aµdτ = aµ exp(-a0τ) dτ µ = 1,...,M    τ 0(0,+ ∞)

It is possible to write P(τ,µ) as a product of  P(τ) and P(µ):
P(τ,µ)dτ = aµ exp(-a0τ) dτ = (aµ / a0) a0 exp(-a0τ) dτ
P(µ) = (aµ / a0) 
P(τ) = a0 exp(-a0τ) dτ

Therefore, we may determine the waiting time for the next reaction by generating two 
random numbers following distributions P(τ) and P(µ).

Note that the algorithm is a rigurous consequence of the Fundamental Hypothesis



Input the desired values for the stochastic rate constants c1,...,cM. Set the initial 
molecular population numbers X1,...,XN and set the time variable t to 0. Initialize the 
unit-interval random number generator (note UiRN distributions P(τ) and P(µ)).

For the current state X1,...,XN calculate and store M values of propensity functions a1 = 
h1c1,...,aM = hMcM. Accumulate and store the sum of propensity functions a0=∑j=1,Maj

Generate two random numbers r1, r2 0 (0,1) using UiRN. Calculate τ = (1/a0)ln(1/r1)
and take µ to be that integer for which ( a1 + a2 + ,..., + aµ-1 ) < r2a0 ≤ ( aµ +, ..., + aM )

Update the state of the system by executing one elementary reaction Rµ and increase 
time of the simulation t by τ. 

Finish

Gillespie’s algorithm
Step 0

Step 1

Step 2.

Step 3.

t < Tmax



MATLAB code 2

% .. code1stoch.m
% .. simple gene expression stochastic and deterministic

clear all
k = 25;
delta = 1;

% .. stochastic eqs. Gillespie's algorithm
P = 0;
Pstochastic = P;
tmax = 10;
t = 0;
tspan = t;



while t < tmax

% .. a's

a = [k, delta*P(1)];

a0 = sum(a);

% .. determine time of next reaction

r1 = rand;

tau = -log(r1)/a0;

t = t + tau;

% .. determine nature of next reaction

r2 = rand;

acumsum = cumsum(a)/a0;

chosen_reaction = min(find(r2 <= acumsum));

if chosen_reaction == 1;

P(1) = P(1) + 1;

else

P(1) = P(1) - 1;

end

tspan = [tspan,t];

Pstochastic = [Pstochastic;P];

end



% .. deterministic eqs.

P0 = 0;

options = [];

[t P] = ode23(@code1equations,tspan,P0,options,k,delta);

% .. plot

subplot(211)

plot(t,P,t,Pstochastic,'r')

legend('deterministic','stochastic')

axis([0 tmax 0 max(Pstochastic)]);

% .. histogram, example of matlab use

subplot(212)

vv = Pstochastic(find(t>3));

his = min(vv):max(vv);

histovv = length(his);

cc = 0;

for n = his

cc = cc + 1;

histovv(cc) = length(find(vv == n));

end

histovv = histovv/sum(histovv);

bar(his,histovv)

meanhist = sum(his.*histovv)

varihist = sum(his.*his.*histovv) - meanhist*meanhist

fano = varihist/meanhist
meanhist = 24.3909

varihist = 26.7338

fano = 1.0961



day III



A more detail model of gene expression

we want to understand 
the separate contribution to noise of
transcription and translation

recall:

increase in efficiency

increase in efficiency

translation

transcription



A more detail model of gene expression

Deterministic model



P(kR reaction) = rk δt

P(δR reaction) = mR rδ δt

P(kP reaction) = mR rδ δt

P(δP reaction) = nP rδ δt

How does the probability of having, say, m mRNA
molecules and n P molecules, p(m,n), change with 
time?



rκ’s as k’s to simplify notation
(this could also imply that V = 1)

P(m,n+1)

P(m-1,n) P(m,n) P(m+1,n)

P(m,n-1)

mkP

nδP

kR

mδR

(n+1)δP

(m+1)δR

(m+1)kP

kR



Equation of the mean; emergence of deterministic laws

note first, a useful equation for a given function f(n,m)

thus, we get
this is the equation the very
same equation we obtained for
the simple model, i.e., it implies 
steady state Poisson 
statistics for mRNA 

what kind of protein macroscopic
steady state statistic characterizes 
protein dynamics?



we make use of the following equations ...

... to get the final expressions for the macroscopic statistics

Fano Protein =

Fano mRNA = 1 protein half-lifetime ~ hours
mRNA half-lifetime ~ minutes
thus 

and 

transcription efficiency does not influence noise

translation efficiency 
influences noise



% .. code2stoch.m

% .. more detail gene expression stochastic and 
deterministic

clear all

kR = .01;       % .. []/s

deltaR = .1;    % .. 1/s

kP = 10*deltaR; % .. 1/s

deltaP = .002   % .. 1/s

% .. stochastic eqs. Gillespie's algorithm

P = [0 0];

Pstochastic = P;

tmax = 8*60*60;      % .. hours

t = 0;

tspan = t;



while t < tmax

% .. a's

a = [kR, deltaR*P(1),kP*P(1),deltaP*P(2)];

a0 = sum(a);

% .. determine time of next reaction

r1 = rand;

tau = -log(r1)/a0;

t = t + tau;

% .. determine nature of next reaction

r2 = rand;

acumsum = cumsum(a)/a0;

chosen_reaction = min(find(r2 <= acumsum));

if chosen_reaction == 1;

P(1) = P(1) + 1;

elseif chosen_reaction == 2;

P(1) = P(1) - 1;

elseif chosen_reaction == 3;

P(2) = P(2) + 1;

else

P(2) = P(2) - 1;        

end

tspan = [tspan,t];

Pstochastic = [Pstochastic;P];

end

% .. deterministic eqs.

P0 = [0,0];

options = [];

[t P] = ode23(@code2equations,tspan,P0,options,kR,deltaR,kP,deltaP);

% .. plot

subplot(211);plot(t/60/60,P(:,1),t/60/60,Pstochastic(:,1))

axis([0 tmax/60/60 0 max(Pstochastic(:,1))]);title('mRNA');

subplot(212);plot(t/60/60,P(:,2),t/60/60,Pstochastic(:,2))

axis([0 tmax/60/60 0 max(Pstochastic(:,2))]);title('Protein')



= 10

= 1

meanhist = 50.0542

varihist = 100.2078

fano = 2.0020

meanhist = 57.1261

varihist = 634.6932

fano = 11.1104



“Random bursts model”

b =



What about external sources of noise?

Intrinsic noise, even if all cellular conditions are equivalent for cells, we have seen
that the reactions associated to transcription and translation originate noise

Extrinsic noise, other molecular species (genes themselves too!), e.g., RNA polymerase,
originate noise too

Can we discriminate both sources of noise?
Intrinsic noise:= Difference in gene expression that arises between two identical 

copies of a gene expressed under precisely the same conditions

cfp
(Lac) repressible
inducible promoter

yfp
(Lac) repressible
inducible promoter



Intrinsic noise:= Difference in gene expression that arises between two identical 
copies of a gene expressed under precisely the same conditions

Two virtually equivalent Lac-
repressible GFP reporter genes 

inserted in the E.coli chromosome
on opposite sites and roughly

equivalent to the origin of 
replication



no intrinsic noise

presence of intrinsic noise

E.coli populations



recall



Promotors repressed by wild-type repressor (lacI) gene
(-IPTG operon OFF) low transcription, high noise

Presence of inducer (+IPTG operon ON) 
high transcription, low noise

(lacI- cells)
high transcription, low noise

modified genetic
background
noisy

oscillating 
expression
also noisy



variance (σ2)
noise = ; noisetotal (ξ) = noiseintrinsic + noiseextrinsic

mean2

222

different to previous definition



222
ξ total =       ξ intrinsic +       ξ extrinsic  ?

green (CFP)

re
d 

(Y
FP

)
no extrinsic noise

red = green no intrinsic noise

then

since



rate of transcription

intrinsic noise decreases with rate
of transcription (transcription in
these experiments does have an 
effect on noise!)

extrinsic noise peaks at intermediate
levels (fluctuations in Lac repressor
proteins. At high or low IPTG 
concentrations fluctuations are buffered
by excess IPTG or excess LacI, 
respectively)



A glimpse on Langevin equations

,            added stochastic variables. 

This equations are fully specified when the probability
distributions for the stochastic variables are also given.

Valid to describe an intermediate situation where fluctuations
are important even though the number of particles is big enough.



Conclusions

- Phenotypic noise in a population as a consequence of protein concentration fluctuations.

-Translation and transcription  leads to a control of fluctuations in protein concentration. 
Translation amplifies transcriptional noise.

- Some genes might have been naturally selected to have inefficient translational rates
(a small rate of proteins per transcript) to avoid these fluctuations and thus avoid noise.

- In some circumstances noise can be highly desiderable as a means of creating 
nongenetic individuality in a population. In some other circumstances noise must be 
reduced (by means for instance of redundacy or negative feedback). 

-Intrinsic and extrinsic sources of noise can be discriminated and measured.

-Theory + experiments + simulations a valid combined tool for biological discovery !!
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