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Biological question
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how does gene expression work In cells?

main goal of the course

a combined approach
to understand Biology

experiments

biological question

theoretical app.i‘o.gches cgrﬁputer simulations
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What 1s gene “expression” anyway?

- A gene (a piece of DNA) expresses itself when it produces
its own distinct protein product, how?, two steps are needed

gene A gene B
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note that genes can be transcripted
or translated with different efficiencies/rates
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how does gene expression work in cells?

such fundamental process should be well regulated,
1.e., 1t should be adjusted in a deterministic clockwise fashion

or ... maybe not?
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1S gene expression noisy? sEn’ib A
- Many molecules that take part in gene expression (including DNA

and important regulatory molecules such as the enzyme polymerase)
act at extremely low intracellular concentrations (low copy numbers)

- Gene expression as a series of biochemical reactions experiences

“surprising” things when one takes the discreteness of molecule
number seriously

Escherichia Coli (E.coli) numbers
2um long
lum diameter

V =nr’l = /2 101 liters
[RNA Polymerase] ~ 100nM = 100 molecules
(InM ~ 1 molecule)
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Biochemical noise

k. p  production

0
-consider a simple gene expression system 5 _
P — U, first order degradation

a common approach is to describe these

. . . . d|P] i
reactions by means of differential reaction- =k —J[P]
rate equations dt

This approach assumes that the time evolution of such reaction is
both continuous and deterministic

continuous? molecule number changes in discrete ways

deterministic? impossible to predict the motion of (classical) molecules due to the
ignorance of positions and velocities of all components of the
system

however in many cases of course the time evolution of a chemically reacting system
can, to a very acceptable degree of accuracy, be treated as a continuous, deterministic
process
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% .. codel.m
% .. simple gene expression deterministic equations

clear all
k = 10;
delta = 1;

tspan = [0 10];

PO = 0;

options = [];

[t P] = ode23(@codelequations,tspan,PO,options,k,delta);

% .. codelequations.m
% .. rate equations for codel

function dpdt = codelequations(t,P,k,delta)

dpdt = [k - delta*P(1)];




— deterministic
/ —— stochastic

small number of molecules
deterministic approximation fails

large concentration fluctuations

10
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large number of molecules
deterministic approximation works

—— deterministic
' —— stochastic ]

time
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Can we measure experimentally such (intrinsic) noise?

- A single-copy chromosomal gene with an inducible
promoter was introduced in Bacilus subtilis

Heplicahon

How to vary rates
of transcription/translation?

%

promoter induction Transcription
via [PTG or point
mutations in promoter

point mutations in
ribosomal binding site
(RBS) and initiation
codon of g/p

inducible
promoter




promoter induction
via [PTG or ...

Operon oftf

induter bound
BNApolymeraie binds Jeoy Gl 10 repressoy
Repressor can'thind

" Aranveript

Induction of the /ac Operon



... Or point
mutations in promoter

point mutations in
ribosomal binding site
(RBS) and initiation
codon of

E‘ Mb‘
b4

Table 1 * Translational mutants: point mutations in the RBS
and initiation codon of gfp

Strain

ERTZS GGG AAR AGE AGGH
ERTZ7 GGG AAR MGG MGG
GGG AAR AGE _TGG
ERTZ9 GGG AAR MGG MGG

ERT3

Ribosome binding site

TGA ACT ACT
TGA ACT ACT
TGA ACT ACT
TGA ACT ACT

Initiation  Translational

codon efficiency
ATG 1.00
TITG 0.87
ATG 0.84
Jedye 0.66

Strain

ERTS7
ERT25
ERTS3
ERTS1
ERTSS

Table 2 » Transcriptional mutants: point mutations

in the P, promoter

-10 regulatory region

-10

CAT ARMT GTG
CAT ALT GTG
CAT ARMT GTG
CAT ALT GTG
CAT AAT GTG

+1

TGT AAT
TGG AAT
TGS AAT
TGA AAT
TAA AAT

Transcriptional efficiency

6.63
1.00
0.79
0.76
0.76
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Sheath Fluig | © 0 0dical Sample
Sheath 'l' ¥
Chamber . . .
™ v PO expression level is measured for single cells
e Dinde . . . .
T = in a bacterial population using flow cytometry
Channel } 4
Laser Fogal Optics DISRMOIC  Eogal ﬂptic-c‘;. photo-
Fillar and Fillars hultiplier

Tu be T T T T T T T T

400 B

200+

number of cells

0 200 400 00 BOO
p (fluorescence units)

Expression level vary from cell to cell (phenotypic noise) as
a consequence of molecular fluctuations within single cells
(biochemical noise)
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translation translational efficiency
| | VS.
transcriptional efficiency

40

I=p= {fluorescence units)

20
increase in efficiency ..
transcription
T T T
a [IFTG]=1 mh - increase in efficiency
q , . , , = F pPTE=Ts UM T >
0 100 200 é .
<p> (flucrescence units) = % -y
&2
i " *
S opl  [PTG=30uM [IPTG]=1 mM
=
[ =N
¥
™ =8 .
= strain ERT3
|:| L | 1 1
0 100 200

<p> (fluorescence units)

Can we understand this behaviour in theoretical terms?
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Stochastic description of chemical reactions Es E)nsa“‘
Recall: For a stochastic system it is not possible to determine exactly the state of the

system at later times given its state at the current time.

We must thus deal with probabilities.
Vi — Collision volume. The

) . . . . molecules M, which are within
Basis of the stochastic formulation: a chemical reaction occurs collision volume will be hit by a

when molecules collide in an appropiate way particular molecule M, in the next
time interval ot.

- Molecular Collisions: random microscopic events

M, (1)

V0t

r1+r2

v

coll — V128t n (rl ™ 1'2)2
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V,,0t T (1, + 1,)?

P (a given M, and M, collide) =
v

ViRt T (1) + 1)

P (a M, and M, molecule collide) =n, n,

\Y

and ﬁnally diffusion-limited R close to one always

T

Vi, R (1, +1,)?
P (a M, and M, react) =n, n, 12 (1 1) Ot =n, n, rot

Vv !

units of inverse time

probability that a given M,
and M, react in unit time (1)

this is the fundamental hypothesis from which we derive both the Master Equation and
the Stochastic Simulation approaches.
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The Master Equation Esb™ca

The stochastic framework considers the discrete number of molecules whose state changes
probabilistically

Recall our previous simple gene expression model

i L P, P(k reaction) = r/, 8t
) - :
P — 0. P(d reaction) = n;, ry Ot
d [P ] . Thus, we go from reaction rates to
At — k=0 [P } reaction probabilities per unit time

How does the probability of having,
say, n P molecules, p(n), change with time?




nplg Ot (np + 1)ry Ot
< «—
P(n-1) » |[P(n)| — 5 |P(n+1)
r, ot r, ot
pn,t+0t) = p(n,t)
—>  + p(n—1,t)r;ot
«— 4+ prn+L1Lt)(np+ 1)rsot
«— — pn,t)nprsot
—> — p(n,t)rpot.

and thus we get in the limit 6t =0

Es

lab

dp(n)
dt

—p(n)(rp +nprs)+pn—10)r. +pn+1)(np+ 1)rs




Some comments:

- All moments of the distribution p(n) can be derived from it

- It 1s a linear equation in p(n).

- Solving the master equation can be done for simple systems,

however only normally at steady state.

- In connection with experiments, p(n) would represent the

fraction of cells having n copies of some given protein

Equation of the mean; emergence of deterministic law

Es lab
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d(n)
dt

- Y n

n

dpy,
dt

= Z nl—pn(ri +nrs) + pon_1rp + pnet(n + 1)rs]

n
n n n

= T —Ty <??>
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Considering that [ P ] v

We can rewrite the deterministic equation as

d(n)
dt

=VEk—=0V|P|=Vk—0dn).

And thus

re = Vi pseudofirst-order reaction

rs = 0 first order reaction
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Steady State PN

and

then

thus

since Zn Pn — I we get | Pn =

dpy,
dt

= 0= —pu(ri + 175) + pu1rt + pusa(n +1)rs

— DTk + pncirs(n + 1) = —pu_171 + pursn

—PnTE + Pntl?s ("?'1. + 1 ) 1s constant (independent of n).

further, considering that <?1’> e o ?i this constant is zero
4 »

1) gs n)y’.
e,
n n!

Pn =

e 4T
< ”"> 55 {: T :} 55

e

n!

the steady state distribution is the Poisson Distribution
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Poisson distribution nio

mean <??> = <'?'1'->s.s- ) .o
Macroscopic statistics

variance o2 = (1)

standard deviation

What is noise then?

O‘ ) —_—

.. ny = — (=1/\/(n). Poisson distribution, noise
definition-1 = T ) E1/Vin) :
increases as the number of
molecules decreases)
2
- a . . . .
definition-2 (Fano factor) = ny = — (=1, Poisson distribution)
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4500 /-if/f
4000 - y.
/
3500 / nl - 014
J
3000 -
n, =1
S :
o
2000 - — deterministic
/ —— stochastic
1500} /
1000 .'[
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,/
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time

small number of molecules
deterministic approximation fails

large concentration fluctuations

Es lab

large number of molecules
deterministic approximation works

—— deterministic
' —— stochastic I

time



Simulating Stochastic Reactions

Two key questions: | When will the next reaction occur?
What kind of reaction will it be?

P(t,u)dt = probability that, given the state (X,,...X) at time t,

the next reaction in V occurs in the infinitisemal time interval
(t+71,t+1+dr)and it will be an R reaction.

propensity function, e.g., n;n, r

P(t,w)dt = Py(7) a dr, here P((7) is the probability that no reaction happens

in the time interval (t, t + 1) and a dt is the probability that reaction
Rp will happen in the time interval (t + 1, t + 1 + d1)

Es

lab

A



E lab
The function P(t): & l.?-nib‘ A
Py(t+dt) =Py(t)( 1 —a,dt)  ay=), 2

(P,(t+dt) — P,(t) )/dt = -a, P,(t)

d P, /dt=-a,P(t)
P,(t) = exp(-a,t)

The reaction probability density function:
P(t,w)dt =Py(1) a,dt=a, exp(-a,7)dt u=1,..M 1€(0,+ )

It 1s possible to write P(t,u) as a product of P(t) and P():
P(t,w)dt = a, exp(-ayt) dt = (a,/ a,) a;exp(-a,7) dt

P(p) = (a,/ a)
P(t) = a,exp(-a,t) dt

Therefore, we may determine the waiting time for the next reaction by generating two
random numbers following distributions P(t) and P(u).

Note that the algorithm is a rigurous consequence of the Fundamental Hypothesis
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Gillespie’s algorithm - 954

Input the desired values for the stochiastic rate constants c,,...,c,,. Set the initial
molecular population numbers X,,...,Xy and set the time variable t to 0. Initialize the

unit-interval random number generator (note UiRN <« distributions P(t) and P(p)).

I<

Step 1

For the current state X,..., Xy calculaéte and store M values of propensity functions a, =
h,c,,...,ay, = h,¢,. Accumulate and st%ore the sum of propensity functions a,=> ;_; \3;

Step 2.

I<

Generate two random numbers 1, 1, 6 (0,1) using UiRN. Calculate t = (1/a,)In(1/r,)
and take p to be that integer for which (a, +a, +,..., + a, )<na;=(a,+,..,tay)

D

Step 3.

Update the state of the system by executing one elementary reaction R, and increase
time of the simulation t by .

t < Tmax



MATLAB code 2

% .. codelstoch.m

% .. simple gene expression stochastic and deterministic
clear all

k = 25;

delta = 1;

% .. stochastic eqs. Gillespie's algorithm

P = 0;

Pstochastic = P;

tmax = 10;

t = 0;

tspan = t;

Es

lab

A



while t < tmax

end

% .. a's

a = [k, delta*pP(1)];

a0 = sum(a);

% .. determine time of next reaction
rl = rand;

tau = -log(rl)/a0;

t =t + tau;

% .. determine nature of next reaction
r2 = rand;

acumsum = cumsum(a)/a0;

chosen_reaction = min(find(r2 <= acumsum));

if chosen_reaction == 1;
P(1) = P(L) + 1;
else
P(1) = P(L - 1;
end

tspan = [tspan,t];

Pstochastic = [Pstochastic;P];

Es

lab

A
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% .. deterministic egs. 10

PO = 0;
options = [];

[t P] = ode23(@codelequations,tspan,P0,options,k,delta);

% .. plot
subplot(211)

40_ T T T =

il |

Tegend('deterministic', 'stochastic') 4 ‘“‘-hﬂi lﬂm L ly L |N w.fi
ax?s([o tmax 0 max(Pstochastic)]); 201 ‘ w W' m wwww N ’ | WI‘”

plot(t,P,t,Pstochastic,'r") 30-

.
i)

% .. histogram, example of matlab use 10 — deterministic |

subplot(212) 0 ! L —— stochastic

vv = Pstochastic(find(t>3)); 0 20 40 6U ou 100

his = min(vv) :max(vv);

histovv = length(his); 0.08 .

cc = 0;

for n = his 0.06 |
cc = cc + 1; 0.04- |

histovv(cc) = Tength(find(vv == n));
end 0.02 ]

histovv = histovv/sum(histovv);

bar(his,histovv)

0
10 15 20 25 30 35 40 45

meanhist = sumChis.*histovv)

varihist = sumChis.*his.*histovv) - meanhist*meanhis. meanhist — 24.3909

fano = varihist/meanhist
varihist = 26.7338

fano = 1.0961
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A more detail model of gene expression

2

I<p= {fluorescence units)

o

40

20

o 100

translation

increase in efficiency

[IPTG]=1 mM

200

<p> (fluorescence units)

Es

we want to understand
the separate contribution to noise of
transcription and translation

recall:
transcription
T 4ol increase in efficiency |
= [IPTG]=75 uM
: \.
5 — % *
L&]
3 ™ “
& =z0f  [IPTG]=30 M [IPTG]=1 mM
=
[=H
¥
B strain ERT3
0 : . !
0 100 200

<p=> (fluorescence units)

lab

A



A more detail model of gene expression

Es lab

Deterministic model

dmRN A

Heplicahon
J
Transcription
BMA
Translation

kr — opmRNA]

kplmRNA| — op|P]



)
mRNA
mRN A

P
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P(k, reaction) = r, ot

mRNA.

0. P(d; reaction) = my, r; ot
P, P(k, reaction) = my r; Ot
0, P(d, reaction) = n, r; ot

How does the probability of having, say, m mRNA
molecules and n P molecules, p(m,n), change with
time?




r.’s as k’s to simplify notation
(this could also imply that V'=1)

P(m-1,n)

P(m,n+1)

dpm N
dt

P(m,n)

+

v

(”l+1)5p
kg

(m+1) 0,

nop

P(m,n-1)

—Pmn|mOp + mkp + kp + ndp| =

P(m+1,n)

ES lab

Pm n+1 ('TZ- + 1)513 + Pm+1.n ('??’1- + 1)6}% e

Pmn—1 kpm + Pin— L-n_.;i‘- R ==
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Equation of the mean; emergence of deterministic laws

note first, a useful equation for a given function f(n,m)

"-r'?'::f”,,r”:} - _— ¢ \ ¢ \ ¢ _—
At — _"f-\fn..*n”*',}‘r‘]'!'i‘ — ':H.frr..wf"'sf}"{':f’ — ':\.frr..rrr,}"l':h’ — "f-\.frr.m”,mf’

Ll 'i;.flfr—l.rrsf};}f\’f’ Ll "f-;fn.m—l”*'}f\}fi" T {;.fn—l-l.m”*'}'f‘!f’ Ll ':;f!?-”i'+|=l}'f‘!”

thus, we get o .
this is the equation the very

same equation we obtained for
d <?'}"? > c the simple model, i.e., it implies
= kp—or(m)

dt > steady state Poisson
d <n > statistics for mRNA
At = kp <'?'T?..> —0p <""* ?> > what kind of protein macroscopic

steady state statistic characterizes
protein dynamics?
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1 1 N A
we make use of the following equations ... poaey
T/ 2
d{n*=) P o o o
——L = 2n"Vop +n)dp +2nmikp + (m)k
e Jup Jep \ [P ey p
dt
d{nm) L . 9, o
— = —(nm)(op +90r)+ (m " )kp + (n)kp
{j?l. \ \ \ \
... to get the final expressions for the macroscopic statistics
f o 2 faa\ 2 N . : :
R R k P/ OR |- }1 P translation efficiency
Fano Protein = — =1+ - —— ~[1 + = | influences noise
(n) Il +op/op Op
Fano mRNA : protein half-lifetime ~ hours
mRNA half-lifetime ~ minutes

thus
?Ll 2 = 1[];;_’ _}r'J and (’i;? < r"'.J',rg

transcription efficiency does not influence noise



% .. code2stoch.m

% .. more detail gene expression stochastic and
deterministic

clear all

kR = .01; % .. [1/s

deltarR = .1; % .. 1/s

kP = 10*deltaR; % .. 1/s

deltaP = .002 % .. 1/s

% .. stochastic egs.

P =10

Pstochastic = P;

tmax =
t =0;

tspan =

0];

8*60%60;

T,

Gillespie's algorithm

% .. hours

ES Hab ~ A4
m...

20

; | | mRNA | |
ol ]
1
% 1 | 8
o | | | M ]
- Wﬁ\#um lu m o) {\ fk 1
FAFAR T
% 1 2 3 4 6 7 8



while t < tmax

end

% .. a's
a = [kR, deltaR*P(1),kP*P(1),deltaP*P(2)]

a0 = sum(a);

% .. determine time of next reaction
rl = rand;

tau = -log(rl)/a0;

t =t + tau;

% .. determine nature of next reaction
r2 = rand;

acumsum = cumsum(a)/ao0;

chosen_reaction =

if chosen_reaction == 1;

min(find(r2 <= acumsum))

IE lab
VY

P(L) = P + 1;

elseif chosen_reaction == 2;
P(L) = P(D - 1;

elseif chosen_reaction == 3;
P(2) = P(2) + 1;

else
P(2) = P(2) - 1;

end

tspan = [tspan,t];

Pstochastic = [Pstochastic;P];

% .. deterministic egs.

PO = [0,0];

1;
ode23(@code2equations,tspan,P0,options,kR,deltaR,kP,deltaP);

options =
[t P] =

% .. plot
subplot(211);plot(t/60/60,P(:,1),t/60/60,Pstochastic(:,1))
axis([0 tmax/60/60 0 max(Pstochastic(:,1))]);title('mRNA");
subplot(212);plot(t/60/60,P(:,2),t/60/60,Pstochastic(:,2))
axis([0 tmax/60/60 0 max(Pstochastic(:,2))]);title('Protein')




protein humber
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Noisy protein

120 , , ; : : 0.02
L 0.018 .
100+ £= 10 ] ootel meanhist = 57.1261
sol OR | 0014 varihist = 634.6932
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60 m R m p\“ | i fano = 11.1104
Y'” (LA 0.008 |
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20 4 0004/ .
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“Random bursts model”

T
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What about external sources of noise? pa

Intrinsic noise, even if all cellular conditions are equivalent for cells, we have seen
that the reactions associated to transcription and translation originate noise
Extrinsic noise, other molecular species (genes themselves too!), e.g., RNA polymerase,
originate noise too

Can we discriminate both sources of noise?
Intrinsic noise:= Difference in gene expression that arises between two identical
copies of a gene expressed under precisely the same conditions

(Lac) repressible
inducible promoter

(Lac) repressible
inducible promoter
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Intrinsic noise:= Difference in gene expression that arises between two identical
copies of a gene expressed under precisely the same conditions

Two virtually equivalent Lac-
repressible GFP reporter genes
oriC inserted in the E.coli chromosome
on opposite sites and roughly
equivalent to the origin of
replication

gaIK{}CFP intC<>YFP



Fluorescence

A

no intrinsic noise

Fluorescence

Time

presence of intrinsic noise

Time




Operon oftf

EMA palgnicrase can't bind

A inducer bound
16 repriéssdr

Eepressor can'thind

." transeript

Induction of the /ac Operon
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Promotors repressed by wild-type repressor (lacl) gene
(-IPTG operon OFF) low transcription, high noise

Presence of inducer (+IPTG operon ON)
high transcription, low noise

(lacl- cells) >
high transcription, low noise

C HF'EEM?:;MIPTG

F M+Wahr

modified genetic oscillatir_mg
background —» AN L <«— expression
noisy also noisy
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g 12
B
:
1 -
=
o
E
'E 08 |
0
=
0.8 ' ' ' '
0.6 0.8 1 12 1.4
Normallzed mean CFP Intensity
variance (62)
. . .2 .2 . 2
noisec = s 1810) S (a) — NOISC; 1 insic T NOISCy rinsic
mean?
2

different to previous definition no = —
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Fﬁtotal - & intrinsic T & extrinsic *

nolextrinsic noise

red = green no intrinsic noise g

[TH

red (YFP)

Time

green (CFP)

N
since %ZP,@” ~ / JEJLP™ (E.1)p(EI) = / JEp(E) / AP™(E.Ip(IE)
T k=1

= f dEp(E)(P™(E)) = D™

. (P?)—((P (P?y— (P2 (D)2 —((P))?
then ¢2,., — ——— — L1 4/
((P))? ((P))? ((P))?

Il

f
=
H.

_|_ ;
Sy
ot
"

ﬂ.



Noilse,

MNaise, 1|

0.1

'TIH

0ol

0.5-
0.7
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0.5
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rate of transcription

T
WK

T

Relative fluarescance
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intrinsic noise decreases with rate
of transcription (transcription in
these experiments does have an
effect on noise!)

extrinsic noise peaks at intermediate
levels (fluctuations in Lac repressor
proteins. At high or low IPTG
concentrations fluctuations are buffered
by excess IPTG or excess Lacl,
respectively)
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A glimpse on Langevin equations Esb™ca

I[mRN A :
d[m ‘ | _ kp — Op[mRNA] + &R
(At o
1P S
: [ht} — A.'.p [?T?RL\TfI] _ (‘JP [P] + £P
(At T

ER, a‘f; P added stochastic variables.

This equations are fully specified when the probability
distributions for the stochastic variables are also given.

Valid to describe an intermediate situation where fluctuations
are important even though the number of particles is big enough.



Conclusions

- Phenotypic noise in a population as a consequence of protein concentration fluctuations.

-Translation and transcription leads to a control of fluctuations in protein concentration.
Translation amplifies transcriptional noise.

- Some genes might have been naturally selected to have inefficient translational rates
(a small rate of proteins per transcript) to avoid these fluctuations and thus avoid noise.

- In some circumstances noise can be highly desiderable as a means of creating
nongenetic individuality in a population. In some other circumstances noise must be
reduced (by means for instance of redundacy or negative feedback).

-Intrinsic and extrinsic sources of noise can be discriminated and measured.

-Theory + experiments + simulations a valid combined tool for biological discovery !
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