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Motif selection in a model of evolving replicators:
The role of surfaces and limited transport
in network topology
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PACS. 89.75.-k – Complex systems.
PACS. 89.75.Fb – Structures and organization in complex systems.
PACS. 89.75.Hc – Networks and genealogical trees.

Abstract. – A system of replicators evolving on a surface is analysed. Population dynamics
together with environmental constraints determine the network of interactions among species.
We show that the mobility of individual elements, implemented as different values of the diffu-
sion coefficient, plays a major role in shaping the topology of the emerging network by selecting
simple network motifs during its evolution. This effect is fully quantified through the relative
abundance of 3-node motifs and the clustering coefficient distribution. For large enough dif-
fusion the behaviour crosses over to that of a well-stirred reactor, and parasites are able to
disrupt the otherwise dynamically stable coexistence of species.

The study of catalytic networks has been an active field of research since the seminal work
of Eigen and Schuster on hypercycles [1]. In this kind of system, a number of different chemical
species interact cross-catalytically. If closed cycles exist, the system is self-maintained. These
networks lie at the root of current theories describing the emergence and evolution of chemical
organization. Systems of replicators are the basic constituent of evolving systems, as well. So
far, most analyses have been performed in networks with fixed interactions among species,
where the population numbers are the relevant dynamical variables. However, the interac-
tions among species evolve as well, though at a larger time scale: Network architecture and
population dynamics co-evolve to originate the structured systems that are found in Nature.

At present, the study of the topological architecture of networks of interacting elements is
opening new avenues in our understanding of the dynamics of such collective systems [2, 3].
Biological and technological networks such as food webs, genetic networks, the World Wide
Web, or those of social acquaintances, are far from being randomly organized. They indeed
result from dynamical processes which might modify both the number and types of the nodes
and the amount of connections present as the network evolves. Often, even the very nodes
have an internal structure which changes in time. As complex evolving systems, networks are
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thus subjected to selection principles, and their structural properties reflect the mechanisms
and dynamical processes acting on them.

Different topological quantities have been used to characterize the architecture of networks,
among them the clustering coefficient [4], the average distance between any pair of nodes, and
the distribution of links per node. These statistics have permitted to establish a classification
of networks and to recognize universal patterns in their structure [5, 6]. Recently, network
motifs have been identified as relevant, though simple, units widely used in the construction
of complex architectures [7–9]. A motif is a subgraph of the network formed by a small set of
nodes (three or four, typically) with their interactions. The repetition of these simple patterns
of interconnections in large networks seems to be related to the function to be fulfilled by the
network (e.g., information or energy transmission), and to the design principles which have
shaped it. An additional interest of network motifs lies in the possibility for them to function
as simple building blocks, able to replicate as a whole, and thus to behave effectively as a new
level on which selection can act. In this way, it would be possible to get faster evolving and
more complex networks in shorter time scales.

In this letter we study the architecture of a network which results from the dynamics of
a system of simple catalytic replicators evolving on a surface. In contrast to other analy-
sis which have identified universal statistical properties of certain networks, we will show how
changes in environmental constraints (specifically, in the mobility of single elements) translate
into different topological solutions. Our motivation to perform the present study under the
conditions to be described is threefold. First, simple replicator dynamics taking place among
a variable number of different species have been explored as model systems for a range of phe-
nomena [1,10–12]. In addition, replication is the crucial, minimal requirement for any system
to undergo competition between akins and eventually Darwinian evolution. Second, the intro-
duction of novelty in the form of replicators with new catalytic properties causes a continuous
turnover of species, thus allowing the emergence and selection of interaction networks [13].
Third, surfaces play an extremely relevant role in stabilizing the dynamics of evolving repli-
cator systems. In particular, they limit the detrimental action of parasites by restricting the
mobility of the interacting agents [14, 15]. Considering together all these elements allows a
study of the topology of networks evolving under endogenous design principles (consequence of
the system’s own dynamics) and further subjected to environmental constraints (or exogenous
design principles, e.g., the dimensionality of the space where the dynamics take place).

Our main result is that changes in the environment, here introduced in the form of a
varying diffusion rate, significantly alter the topology of the interaction network. An increasing
diffusion rate effectively interpolates between a situation where local processes are dominant
and a mean-field situation equivalent to that taking place in a well-stirred reactor. In the
latter limit, the system will eventually collapse due to the action of parasites. It will be shown
that the relative abundance and success of three-node motifs and the clustering coefficient [4]
reflect how the emerging network adapts to different environmental conditions.

The precise implementation of the dynamics, which is partially based on [13], goes as
follows. We consider a two-dimensional lattice of size N ×N with open boundary conditions.
Initially, the lattice is empty. At each time step we add a single element belonging to a
species i. Each species is characterized by its catalytic interactions with the other species.
These interactions are defined through a sparse matrix c(i, j), whose elements take value 0 or 1.
If c(i, j) = 1, then i could potentially catalyse the production of j. This reaction becomes
effective whenever two molecules of species i and j happen to meet at adjacent sites. Then,
the catalytic reaction i + j → i + 2j takes place. If c(i, j) = 0 no interaction occurs. When a
new species enters the system, there is a probability p � 1 for each element of the catalysis
matrix to take value unity. Individual molecules decay at a rate δ and diffuse at a rate D.
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Fig. 1 – Decrease in the average number of species 〈S〉 coexisting at the statistically stationary state
for increasing values of the diffusion coefficient. The networks show three particular cases for N = 128,
p = 0.05 and δ = 0.005 with D = 1, D = 4, and D = 16. Numerical interpolation returns a functional
relation of the form 〈S〉 ∝ D−0.57±0.01 (solid curve). Dashed lines stand for 2-cycles, dotted lines for
3-cycles. The largest network has seven 2-cycles and seven 3-cycles (not explictly shown). All our
results have been averaged over 106 time steps.

Diffusion is modelled by means of the Toffoli-Margolus algorithm [16]. The elementary step
of the algorithm consists in dividing the whole lattice in 2 × 2 squares. The states of the
four sites are then moved clockwise or counterclockwise, the direction being chosen at random
and with equal probability for each of the N/2 × N/2 squares. The lattice is partitioned by
starting in the (x, y) = (1, 1) or in the (x, y) = (2, 2) site, alternatively. The number of times
that this elementary step is applied per reaction step coincides with the value of the diffusion
coefficient D. It has been shown that, in its continuum version, this algorithm (designed in
origin to accurately simulate lattice gas dynamics) exactly translates into a diffusion equation.

On the average, and during the initial transient, there will be 1/δ molecules diffusing
on the surface at a rate D. The state of the system changes once the first autocatalytic
cycle appears. This transition occurs after a time of order τ ∼ (Nδ/p)2, i.e., the probability
that two molecules catalyse each other’s production and meet on the surface is the product
of the cross-catalysis probability p2/δ times the probability that they meet before decaying,
(δN2)−1. At this point, the population of the two species involved grows until they almost fill
the whole surface. This situation facilitates that new species establish, and the total diversity,
measured as the number S of different species present, grows. Shortly after, a statistically
stable equilibrium where the average number of species 〈S〉 keeps approximately constant
is reached. Fluctuations in the amount of species present are narrow, and the distribution
of S-values is approximately Gaussian. This result is in contrast with that obtained in a
similar model where space was not made explicit [13], and large extinctions were observed. In
the present case, it is the confinement of the dynamics to the surface that limits the action
of parasites and allows, thanks to the slow diffusion of species, local extinctions driven by
population dynamics to be counterbalanced by migration from adjacent areas [17].

At the statistically stationary state, and for low enough diffusion, the system has a rich
spatial structure and high diversity. In fig. 1 we represent the typical decrease of 〈S〉 with
increasing mobility, for other parameters fixed. The characteristic scale at which interactions
between neighbors can take place grows proportionally to

√
D. For increasing D, the con-
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Fig. 2 – Distribution p(C) for different parameters. Note the approximate invariance of the distribu-
tion p(C) for constant D/N . The insert (N = 128) shows the variation in 〈C〉 as a function of D:
more strongly connected networks are selected and spatial structure is lost in order to ensure global
persistence. Other parameters as in fig. 1.

finement of particles to their spatial neighborhood is less and less efficient, and species which
are kept apart for low D “see” each other for larger D. Eventually, parasites can have access
to a large number of altruistic species [10], and the system becomes no longer sustainable.
Restriction of movement to the surface can also be viewed as a kind of compartmentalization
applied to the interacting elements. Thus, in a large enough system, independent evolution
within subareas which are far away from each other becomes feasible.

It is important to emphasize the relevance of the restricted mobility for the architecture of
the interactions. As inserts in fig. 1 we have represented the networks of potential interactions
between species, that is the nodes and links in the matrix c(i, j). Apparently, the average num-
ber of links per species decreases with increasing diffusion, an observation which might seem
to contradict the fact that a greater degree of mixing implies contact with a higher number of
species. This is a consequence of the difference between effective and potential interactions.
When mobility is restricted, replicators will only effectively interact with their closest spatial
neighborhood. The appearance of self-sustained subpopulations supports a richer diversity,
increasing the opportunity for a newcomer to have more connections. But spatial isolation im-
plies that most of such connections are only potential ones and the emergence of cliquishness
among species is thus limited. This qualitative observation can be substantiated quantita-
tively: The clustering coefficient measures how important for the viability of the system is
that the set of species connected to a given one is also linked, thus highlighting cliquishness
in network structure.

We have calculated both the distribution of clustering coefficients p(C) and its average
〈C〉 for each value of the diffusion D. Our results are represented in fig. 2 for different system
sizes and D-values. We observe that 〈C〉 always increases for increasing D. This implies
that the higher the mobility, the lower the number of areas where evolution proceeds in an
approximately independent fashion. The distribution p(C) shows how the weight of different
C values is shifted from lower to higher clustering coefficients as D increases. In the example
shown in the insert of fig. 2, parasites disrupt the system for D � 50.

In order to further quantify the topological architecture of the matrix c(i, j), we have
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Fig. 3 – All thirteen 3-node directed motifs ranked according to accumulated population. The coef-
ficient z is the ratio between the number of motifs with λ = 0 (motifs 10 to 13) and that of motifs
with at least one cycle (λ1-9 ≥ 1). For increasing D, parasites become increasingly abundant. See
main text for details; parameters as in fig. 2.

calculated the average number of 3-node motifs present at stationarity for increasing D. Only
because movement is restricted to the surface can the global network be analysed in terms of
3-species motifs: effective interactions take place among few different species. Our results are
consistent with this assumption. We have first explored the “success” of each motif quantified
by the fraction of the total population accumulated by the three involved species. Numerical
simulations return a rank ordering of the motifs according to such criterion. This result is
represented in fig. 3. The ranking obtained is independent of the external parameters of the
system, and just reflects the growth rate of the populations interacting according to each
motif. Such growth rate is proportional to the largest eigenvalue λ associated to each of the
motifs [18]. We can think of it as an intrinsic property of the system set by the specific
population dynamics implemented, and as such we expect it to be independent of diffusion.
This is what is observed. For the first motif, with three 2-cycles and two 3-cycles, λ1 = 2.
For the second one, with two 2-cycles and one 3-cycle, λ2 = 1.6180. The third one has two
2-cycles and λ3 =

√
2, and the fourth motif has λ4 = 1.3247, with one 2-cycle and one 3-cycle.

Motifs from five to nine have one single cycle, which implies λ5-9 = 1. Purely parasitic motifs
have no cycles, and their largest eigenvalue is thus λ10-13 = 0.

Environmental constraints are unable to modify the ability of different motifs to accumulate
population. However, they play a main role as motif-selecting agents. By changing the amount
of different motifs present, diffusion acts on the topology of the interactions network. First,
we observe that the absolute number of motifs decreases for increasing D, simply reflecting
the fast decrease in the average diversity 〈S〉. Second, it is remarkable that, on the average,
the most abundant motifs (except for motif 5 which ranks fourth in topological abundance)
are the parasitic ones with λ = 0. But the most relevant observation is that the type of motifs
present is modified as D changes. We have measured the relative abundance z of parasitic vs.
self-sustained motifs, z = N(λ = 0)/N(λ ≥ 0), where N(λ) is the absolute number of motifs
with the largest eigenvalue λ for each D. Increases in the mobility of the elements break
apart the dense spatial core formed by species participating in self-sustained motifs. Then,
parasites are able to reach the center of this core, and not only the periphery. For too high a
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degree of mixing, the isolating effect of the surface is lost, the dynamics crosses over to that
of a well-stirred reactor, and the system becomes dynamically unstable.

Confinement to the surface implies a strong suppression of long catalytic cycles. For rela-
tively small values of the diffusion, cycles with more than three species are rarely observed and
accumulate a small fraction of the population. It has been suggested that, in certain natural
systems like the metabolism and the chemical reaction networks of planetary atmospheres,
long cycles could have been selected against to shorten transition times and milden the re-
sponse to external perturbations [12]. We have observed that the presence of 3- vs. 2-cycles
increases as D increases. This is in agreement with our scenario where we have interpolated
from interactions taking place in the two-dimensional space to those occurring in a mean-
field–like environment, and where longer cycles could be partially sustained. Nonetheless,
large cycles are more prone to support side reactions that would complicate or disrupt them.
For this reason, it has been recently put forward that surfaces might have played a relevant
role in the self-organization of prebiotic metabolisms, in particular helping organize simple
(and more robust) cycles of the form here observed [19].

The distribution of population size of species and their lifetimes reach stable profiles at
stationarity. In both cases, the probability of finding a species represented by a given number
of particles and the lifetime of a species (typically until it accumulates too many parasites
and is forced to extinction) behave as power law functions [17]. These results are qualitatively
identical to those obtained in model ecosystems when the continuous arrival of new species
keeps them out of equilibrium [20]. It is remarkable that, despite the strong structural dif-
ferences between the networks analysed in this work and those of food webs (the former are
basically dependent on cross-catalysis and the presence of cycles, while cross-predation is ex-
tremely rare in the latter), the quantities cited are almost identical in both systems. There is
an additional observation which seems of interest: The analysis of 3-node motifs in ecological
networks reveals that the most abundant one is the three-chain [7]. In our model, also this
motif is the most abundant in the selected networks and for all the values of D analysed:
it is found a hundred fold more frequently than motif 4 (see fig. 3), for instance. However,
the three-chain motif ranks 12th according to its ability to sustain populations. We believe
that network topology is accessory to function and other quantities (like population numbers)
might help assess the real role played by a given structure.

We can compare the networks selected in our dynamical system with those generated by
a simple growth model where no population dynamics is implemented. In the limit where the
total number S of nodes is S � p−1, and in the absence of population dynamics, the obtained
network would be equivalent to one of the models studied in [21], where a new node with a
single connection is added per time step. Note that in our case most nodes would have no
links for too small p, so they would be discarded, and nodes with more than one link would
be very rare. The resulting network has a power law distribution of links per node, while
our degree distributions are bell-shaped with an exponentially decreasing tail for increasing
number of connections. In this sense, the initial distribution of links per species in the present
model has little influence in the structure of the selected network.

In summary, the analysis of a simple model of a replicator network evolving on a surface
has shown how the interplay between population dynamics and enviromental constraints is
able to select non-trivial topologies. Quantitative and qualitative differences between the
obtained networks in different situations (including the case when population dynamics is not
implemented) have been highlighted. The results here presented speak for the selective power
of dynamical mechanisms which are, in addition to functional requirements, an active design
principle for network topology.
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The authors thank J. Pérez-Mercader for support and U. Bastolla, C. Briones,

and E. Lázaro for discussions. Support from the MCyT (Ramón y Cajal program) is ac-
knowledged.

REFERENCES

[1] Eigen M. and Schuster P., The Hypercycle: A Principle of Natural Self-Organization
(Springer, Berlin) 1979.

[2] Strogatz S. H., Nature, 410 (2001) 268.
[3] Newman M. E. J., SIAM Rev., 45 (2003) 167.
[4] Consider the set of species linked to a given one. Suppose there are m such species. The clustering

coefficient is the ratio between the number of links actually existing among these species and
the maximal potential number of links (which equals m(m − 1)) for a directed graph.
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