Supplement

Multistable decision switches for flexible control
of epigenetic differentiation

Rall Guantes? and Juan F. Poyatbs

! Department of Condensed Matter Physics and

2 Instituto Nicohs Cabrera, Facultad de Ciencias C-XVI, UniversidadbAama
de Madrid, Madrid, Spain.

3 Logic of Genomic Systems Laboratory, Spanish National Bimtelogy Centre,
Consejo Superior de Investigaciones Cificdis (CSIC), 28049 Madrid, Spain.

Effective models; motivation

To describe the dynamics of many of the control circuitstisin Table 1 (main
text), we consider two interacting regulators which aredblaffect each other’s
production, while positively autoregulating their own exgsion. We further sup-
pose these regulators to be transcription factors actingpasdimers, as is the
case in bHLH proteins (e.g. Ac, Sc, Pax6, MyoG in Tables 1 ahy [8ucine
zipper factors or some types of homeodomain proteins, ssitheaPOU factor
Oct4 [1] or the caudal related protein Cdx2 [2]. Although mafhyhe feedback
interactions found in cell differentiation contexts arediag¢ed by additional tran-
scription factors, signals, etc., we seek to representdbli lolynamical features of
these switches with a plausible mathematical model and amalrset of parame-
ters of biological significance. For instance, indirectulagjon with the aid of an
intermediate species can be simplified, under the assumtbtad this intermedi-
ate is in equilibrium, to the same mathematical equatiossusised here. Thus,
we start by writing the biochemical reactions for productamd degradation of
four molecular species: protein and mRNA of each of the twomaments {, V)
of the control module. These reactions can be separatedtiarfid slow.

Fast equilibrium reactions

We assume that DNA-binding reactions and dimerization asé fFurthermore,
they are lumped together in a single reaction term underdbailerium assump-
tion. Since each component is regulated by its own produetedsas by the



partner’s, we consider in principle different promoterdiyg sites forX or Y
molecules. These sites can be independent, interactingnapletely overlapping
as is the case in both prokaryotic [3] and eukaryotic trapson regulation [4],
giving rise to a potential combinatorial logic of gene exgsien [5, 6].
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Here thek’s represent products of equilibrium constants, beingttiegproduct of
binding (protein-DNA) and dimerization constants, in E@$), or joint binding
constantsK;y(z' = z,y) in Egs. (2). In the case of two independent promoter
sites,K;y = K! x K;, while for overlapping promoters, only one species can be
bound at a time and’}, = 0

Slow equations

Transcription, translation and degradation of both conepts are considered as
slow reactions. Explicitly,
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and analogous equations for thespecies. Her@;(i = x,y) are the correspond-
ing basal transcription rateg; andv; the auto and crossregulation strengths re-
spectively, and.; the joint regulatory strength. For independent promotessi
i = p; X v;. With the constraint that the total number of promoters ycopm-
ber) is fixed,P! = P, + P,X + PY, + P, X,Ys, and using the fast equilibrium
reactions [EQs. (1)-(2)] we obtain the time evolution of ther molecular species
considered here as
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These are differential equations for the total number ofeans per cell. To con-
vert to cellular protein concentration one needs to divigedll volume, [ X| =
X/V. The time evolution for each species concentration is now
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where[P!] is the total promoter concentration for each gene, and ttegrd@istic
rate constants have been appropriately rescaled by celinefor the series of
bimolecular reactions, i.ek; = K xV?andk]; = K};xV*, with {i, j} = {z,y}.
Cell growth and division can be taken into account in an apprate manner by
assuming an exponential law for growth [8](t) = Vi exp (k,t). The growth
rate is given byk, = In(«)/Ttcye, WhereT,. is the mean division time and a
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scale parameter giving the maximum increase in cell voluly@dally o = 2).
Then cell division occurs whel (t = T..,.) = al{. Assuming that the total
number of promoters scales proportionally with the cellwoé, and using for the
time evolution of the molecular concentratio?—%} = & (dX — [X]dv—(t)), the

: : . V(e \ dt . dt
resultant equations are identical to Eqgs. (5) except tleatldgradation rates for
mMRNA and protein are now given Y, . ... = drmz.my+kg, 0, , = 2 +ky, Which

are effectively taken as a single parameter. For stablejnt, , < k, and
degradation is just due to dilution by cell growth and dietsi Protein degradation
can be faster (e.g., by proteases or by sequestration diviai#mn with different
molecular species), which implies that, > k, and the growth term can be
neglected.

Scaled variables and quasi-steady state approximation

We want to reduce both the number of variables to make themsyamenable
for mathematical and phase plane analysis, and the numlparameters to the
minimum set with biological significance. First, it is comvent to define dimen-
sionless mMRNA and protein concentrations by

v o= \Jk2[x],
my =\ kZ[my],
y = \/@[Y],
my = kjm,). (6)

Egs. (5) now become
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with o; = K} /k; (ratio of cross over self-binding rates) ang = k/;/(k; - k)
(ratio of joint over independent rates for simultaneouslinig of both species).
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We note that for completely overlapping promoter sidéSR transcriptional gate)
o;; = 0, whereas for independent promoter sites= o, x o, 1, = p; X v; and
the non-linear production rates for mMRNA are the product af bl functions,
one for each variable. Applying the standard quasi-stesate sipproximation
(QSSA, fast mMRNA dynamics compared to protein dynamiégl), = d;’;y ~ 0,
one readily obtains Egs. (1) in the main text with

G = ﬁi[PiT] k’; b;, (8)

whereb; = v;/0.,; is the burst parameter or translational efficiency.

To gain insight on the validity of this approximation, let assume similar
production and degradation rates for both componentsyi,e= v, = v, 5, =
By = B, 0, = 6, = dandd,,, = dny, = 0,. Rescaling time by the protein
degradation rate; = ¢ - §, EQs. (7) can be written as

dm «Q
z = = —A.
d
% = A-b-m, —x,
dm,, oy
dr - ﬁg(‘xagﬁ A myu
dy
% — A.b.my_y’ (9)

whereA = §,,/6 is the relative messenger-protein degradation rate. The va
ation of mRNA at short time scales can be obtained by consigehe protein
concentration fixed. Then, from Egs. (9) one sees that fostaom protein values
mRNA decays asn, , (1) x exp (—A7) while for constant messenger concen-
tration the decay in protein concentration is simplyexp (—7). Therefore it is
reasonable to expect that mRNA dynamics adapts much fagbeotin changes
whenA >> 1. This is illustrated in Fig. S1. FaA = 10, the QSSA is a fairly
good approximation to the four-dimensional dynamics (carglack and red
lines), while forA = 1 the two- and four-dimensional trajectories (black and blue
lines) separate, although they eventually converge todheesequilibrium state
in the long run. Indeed, we checked that the multistabilbyndins in the phe-
notypic maps shown in Figures 2 and S3 are the same when @i@duwhvith the
four-variable model [11]. The effect of changihgs important when consider-
ing the stochastic dynamics [9]. In fact, experimental Esidf stochastic gene
expression in single cells demonstrate that translatibnedting is an important
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source of stochasticity in prokarytic [10] and eukaryoteng expression when
coupled to transcriptional noise [12].

Stochastic smulations and parameter ranges

Provided that equilibrium and quasi-steady state apprations hold for the de-
terministic system, stochastic simulations using Gilie'spmethod [13] can be
simplified in a similar vein [14, 15]. Therefore we used therfdimensional
model Egs. (5) as a starting point for the stochastic sinarat To have a full
correspondence with the simplified two-dimensional moBgl, (1) in main text,
we need to specify the following parameters:

(1)

)

®3)

Regulatory strengthsf v;, i1;), or fold-change in promoter activity once
the proper transcription factor is bound. These paramefgs from0 (to-

tal inhibition) to 100 for the case of strong activation. This range reflects
orders of magnitude typically found in both prokayotic anét&yotic gene
regulation.

Relative binding affinities both for individual() and joint @;y) specieso;

is varied between (0.01,2). A value®f < 1 denotes higher binding affinity
of a given promoter for its own protein (and then the thregHol autoreg-
ulation is smaller than for cross-interaction) white > 1 corresponds to
the opposite situations;, is set to0 for most of the paper calculations
(completely overlapping promoter sites) but it can rangenfthis value to
o; X o; (independent promoter sites).

We need also to specify the scaling factéfsand £ (promoter binding
constants for each species) in the deterministic case. IReaaithese are
the product of dimerization and protein-DNA associationstants. Here
we fix k7 = kY = 107> nM~* (arangel0~' — 107? is typically found in
bacteria [16]). The stochastic rate constants are obtdinatthe determin-
istic ones ask? = k%/V?, KY = k¥/V? K} = K} - 0., KY = K! - 0y,
K;, = K; - K, -0, andK}, = K} - K! - 0,,, WhereV represents cell
volume. In the stochastic simulations cell growth and dbriscan be taken
into account by considering as an additional random variable obeying the
equationdV/dt = k,V, until a maximum value is attained [17,18]. Here we
do not take into account the contribution of cell growth togexpression
noise, and fid” = V; - Q) in stochastic simulations, whelg is a reference
cell volume including Avogadro’s number afitla scale factor giving the
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contribution of protein number or finite size effects to noolkar noise [19].
For a given value of molecular concentrations, the greatestaling factor
Q2 the larger the number of molecules, i.e., noise is reduaedut simula-
tions, we také/, = 10°l for simplicity (note that concentrations are in nM)
which implies a cell volume of 1.7m3. We also tak&) = 10 in most of
the simulations. The effect of finite size noise in the protieady-state
distributions is illustrated in Figure S2 (compare black aed lines).

(4) Relative molecular stabilities. From the adimensiomellgsis of the four-
variable model, Egs. (9), we also fix the ratio of protein/mRd&gradation
to a valueA = 10, which implies a ten times faster degradation rate for
MRNAs than for protein. Then we suppose that proteins ardestaid
mainly decay by dilution due to cell growth. Assuming a protealf-life of
one hour §, = J, = 1 h™!) then messengers are degraded on average every
six minutes, which are typical values of prokaryotes.

(5) Burst parameter or translational efficiency. We bise= b, = 1 for most
simulations (for a glimpse on the effect induced by tramstet! efficiency
on molecular noise, compare black and blue lines in Figuje S2

(6) Finally, we specify the average protein production kate= «;/é; as for
the two-dimensional model Eq. (1). Setting the copy-nuniBer= P =
1, then the basal transcription rates follow from the giverapeeters as

Gi = a; - 51'/(\/?2 - PT" - b;). Note that a ten-fold increase in translational
efficiency is coupled here to a ten-fold decrease in trapson and thus the
average number of proteins remains the same, but the nurhimerssenger
molecules is reduced (MRNA noise). On the other hand, a tenfforease

in volume produces also a ten-fold increase in transcnpdiod abundance
of proteins and mRNAs are increased in the same way (finitersze).
The different effects of these two factors in the width oftpmo distributions
are shown in Figure S2.

Signals

We model signals as molecular species external to the tsrconsidered. As
such, they follow an independent dynamics that we appraeiras a birth-death
process:

as

6,8 1
=06, (10)



To create a signal pulse, we fix the degradation ratg at 1~»~L. Initially, the
signal production rate is, = 0. At a given time, the signal is produced at a steady
ratec, = s., - 05 SO that it quickly reaches their maximum valsig (see insets
in Fig. 5A). The signal is terminated at a later time when tberse disappears
anda; is set to zero again. For the deterministic equatiens,the signal con-
centration andvs has units ofuM.A~!. In the stochastic simulations, the noise in
the signal can be varied independently from the noise in itteelit components
defining the stochastic production raté = o - V; whereVj is a volume factor
changing the number of signal molecules. Signals are byaamisidered affect-
ing the circuit components in two possible ways: fast, indggost-translational
modifications of theX or Y proteins. In this case, the equations {of, V) are
only modified by an extra linear degradation/productiomteriginated from the
reactions

S+x =g,
S+Y % S,
S % S4x,
S 5S4y (11)

Slow: signals may be transcription factors external to theud, that may act
repressing or activating theX, Y') components. Here we assume that indepen-
dent promoter sites are available for the signal molecudébqugh they could
also operate cooperatively with any of both species). Egastire now modified
according to the reactions.

P.S ™% P.S+m,,
PSs ™ pS+m, (12)

wherer, , are the signal regulation strengths { < 1 for inhibitory signals,
T,y > 1 for excitatory ones).

In the main text, we showed examples of signal processing fagt or post-
translational events. Similar computational properti@s lbe obtained with slow
or transcriptional signals in the appropriate regimes. el@v, slow signals may
change the response dynamics and thus the discriminatiformance of some
stimulus features. An example is the discrimination of éthstimulus strength in
stochastic decision switches (see Figure 4.C in main texg.stochastic decision
switch, a symmetric expression state (a stable node) becanmsable due to a
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subcritical pitchfork bifurcation (and then becomes a $agdint, with the unsta-

ble direction being perpendicular to the diagonal in thesphalane). Although

this bifurcation can be induced by both fast and slow sigmakvents, fast signals
usually promote faster dynamics along the unstable doegcénd this results in a
faster discrimination of biased signal amplitudes. Thiflustrated in Figure S6,

where a decision switch operating close to the pitchforlrgdtion discriminates
fast (Figure S6.A) and slow (Figure S6.B) inhibitory signa3ne sees that not
only discrimination performance of fast signals is stegpat also signal noise
affects this performance in a greater extent.

Role of autoregulation in symmetric progression switches

From the biological scenarios documented in the literatsee Table 1) it seems
that genetic architectures of mutual activation of keystaiption factors with au-
toregulation operate as standard (symmetric) progressitiches. One possible
reason inferred from our analysis is that, for moderatertmsgt crossinteractions,
autoregulation should be exceedingly high to generate degistence of asym-
metric expression states. What could be the role played loyegulation in these
type of circuits? Here we have investigated two possiblsoes, both confer-
ring flexibility to switch performance. One possibility iisat, for a fixed cross-
interaction strength where the circuit is not able to opesata switch (being in a
monostable regime), the modulation of autoactivatory ooy enable the sys-
tem to work as a switch. This is demonstrated in Figure S9aRtandard switch
without autoregulation (Figure S9.A) if we keep the crossiaction-strength at
v = 10, a (degradation) signal is not able to change the initial{fhigh) ex-
pression state. For the same cross-interaction strengiha@ding autoactivation
to both circuit components, in a proper range of autoreguriatrength the cir-
cuit is able to work as a switch upon the same signal (FigurB)SThe second
possibility is that autoregulation may change the combiryadf signals to which
a mutual-activation switch responds. In Figure S10, we stieewesponse of a
mutual-activation architecture placed in a (high,highpression state to indepen-
dent degradation signals in tBé andY components. In the case that there is no
autoregulation (Figure S10.A) the switch responds as ayf@R gate (a signal
affecting only one component above a given threshold inglaadange of expres-
sion state). However, by adding autoactivation we needithal&aneous action
of signals on both components (AND gate) to switch to the (lmw) expression
State.



References

[1] Pesce M. and Sdter H. R. (2001)Sem Cells 19 271-278.

[2] Suh E., Chen L., Taylor J. and Traber P. G. (198%W). Cell. Biol. 14 7340-
51.

[3] Browning DF and Busby SJW (200Mat Rev Microbiol 2:1-9.

[4] Remeényi A, Scloler HR, Wilmanns M (2004Nat Struct Mol Biol 11:812-
815.

[5] Kuhlman T, Zhang Z, Saier Jr. MH, Hwa T (200rP)oc Natl Acad Sci USA
104: 6043-6048.

[6] Istrail S, Davidson EH (200539roc Natl Acad Sci USA 102: 4954-4959.
[7] Mayo AE, Setty Y, Shavit S, Alon U (2003LoSBiol 4:555-561.
[8] Kuznetsov A, Kaern M and Kopell N (2008 AM J Appl Math 65: 392-425.

[9] Thattai M and van Oudenaarden A (200 pc Natl Acad Sci USA 98:8614-
8619.

[10] Ozbudak EM, Thaitai M, Kurtser I, Grossman AD and van &uaiarden A
(2002)Nat Rev Genet 31:69-73.

[11] Cherry JL and Adler FR (200Q) Theor. Biol. 203:117-133.

[12] Blake WJ, Kaern M, Cantor CR and Collins JJ (20BBjure 422: 633-637.
[13] Gillespie DT (1977)] Phys Chem 81: 2340-2361

[14] Haseltine EL, Rawlings JB (2002)Chem Phys 117:6959-6969.

[15] Rao CV, Arkin AP (2003 Chem Phys 118:4999-5010.

[16] Guido NJ, Wang X, Adalsteinsson D, McMillen D, Hasty J,nBa CR,
Elston TC and Collins JJ (2008Jature 439:856-860.

[17] Adalsteinsson D, McMillen D and Elston TC (200BMC Bioinformatics
5:24.

[18] Lu T, Volfson D, Tsimring L and Hasty J (2008yst Biol 1:121-128.

10



[19] Kaern M, Elston TC, Blake WJ and Collins JJ (200&} Rev Genet 6:451-
464

11



(x.y)

time

Figure S1: Deterministic dynamics for the reduced twoalale model (black
lines) compared to the four-variable model with differeatias of mMRNA and
protein degradationX). Red line: A = 10. Blue line: A = 1. Solid lines
correspond to the time evolution of thecomponent, and dashed lines to the
component. The systen is in the tristability regime with= p, = 10, v, = v, =
0 (mutual inhibition),o, = o, = 0.2 anda, = o, = 1.
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Figure S2: Comparison of different algorithms and intrinsagse sources. Prob-
ability distribution of thex component concentration for a population of cells in
a symmetric high expression state. Solid lines: simulatioith Gillespie’s al-
gorithm. Dashed lines: solution of the chemical Langevinaipns. Black lines
correspond to a burst parameter 1 and a volume factof2 = 10 (V = V- Q).
Blue lines: effect of translational bursting € 10, 2 = 10). Red lines: Effect of
finite size noisel = 1, = 1). Other parameters of the model for the stochastic
simulations are, = p, = 10, v, = v, = 0, 0, = 0, = 0.2 (mutual inhibition,
tristability regime) o, = o, = 1 andk} = kY = 0.001 nM~>.
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Figure S3: (A,B). Phenotypic map of the circuit with averageduction rate

a = 1 and different cross-interaction strengths. (A)= 2, (B) v = 20 (the
cross-inhibition case = 0 is shown in Fig. 2B). In these panels, like in Figure
2, promoters are completely overlappinrg,( = 0). (C,D) A possible role played
by cooperativity among species. Here we plot the phenotyjaip fora = 1, as a
function of the autoregulation and the joint interactioresgth parametet, Eq.
(1) main text, for slightly non-overlapping promoters,{ = 0.001) and cross-
interaction strengths = 2 (C) andr = 20 (D). In the case of total competition
for the same promoter site, panels (A,B), positive crossradtion is not able to
generate bistability of symmetric expression states (Q10)), since at an average
production rate: = 1 the lower (0,0) state is not stabilized. Strong coopeltgtivi
(recall thaty, = p x v for independent regulation) together with competition for
the same binding sites favors the appearance of a low (Ofdgssion state and
bistability (stability regions correspond to the areasdegusps).
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M (highilow)
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Figure S4: Reversible (graded) deci-switch. The intersadtietween the cir-
cuit response curves or nullclines (lines in the planes) identifies the system
steady states, being these either stable (filled circlesinstable (empty circles).
In this way, a range of different initial concentrations bé tcircuit components
(basin of attraction; light and dark grey areas) ends up éenséime expression
state. A reversible deci-switch is associated to a tramsith which the initial
expression state (0,0) becomes unstable (A). Two new asyncrstates appear
in a graded fashion (B). This is a supercritical pitchforkubifation, insets (A-B),
where the magnitude and types of available equilibria aotted as a given pa-
rameter changes in theaxis (solid line; steady state, dotted line; unstable=}tat
Note that in this case there exist no hysteresis. The transg reversible, which
means that the appearance of new expression states sto@pgnds on the pres-
ence of a external factor (acting as bifurcation paramefdn)s could represent,
for instance, a primary master regulator.
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Figure S5: (A) Increased autoregulation enhances durabection. Here we
examine how the response of a decision switch to stimuluatidur depends on
autoregulation strength. The response for an autoregulatrengthp = 10 (red
line and filled circles, the same as in Fig. 4B) is compared ¢orédsponse at
p = 50 (blue line, open squares) for a fast signal producing theeghneshold in
duration detection. Larger autoregulation induces a grafigcrimination perfor-
mance. Other parameter values are- 0, « = 1. (B) Increased autoregulation,
however, delays differential amplitude detection in stastit decision switches.
Same symbols and parameters than those in panel (A).
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Figure S6: Effect of fast and slow signals on strength disicration. A mutual
inhibition switch is placed in a regime & 30, = 0,0 = 0.2,a = 0.1) where a
symmetric (high,high) expression state becomes unstathesimilar amplitudes
for: A. fast and B. slow degradation signals. Red lines andesrshow the per-
formance using deterministic signal pulses, and blue l{sggares) adding noise
to the signals such that the mean number of signal molecsibeisame in both
cases. Lines are fits to Weibull or stretched exponentiaitfans.
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Figure S7: Multistability domains as a function of relativegeraction strength

(e = 1). For moderate to large average production rates and guieten
strengths, the boundaries between monostable and mbiléstamains follow a
linear relationp/v o 1/c. For instancep/v > 20 indicates a tristable domain at
o = 0.2. Notice that for highr values the symmetric expression state (1,1) is no
longer available and only two asymmetric equilibria coexis
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Figure S8: Autoregulation as a compensation mechanism. miedual inhibi-
tion (v = 0) and moderate autoactivatiop & 5), the ratio of binding affini-
ties (o parameter) determines if the circuit behaves as a togglelsWA,C) or
generates tristability (B,D). (A) With similar binding affires (¢ = 0.6), the
autoregulation is acting at the same time than cross-ictiera Then mutual in-
hibition dominates, amplifying the expression of the 'wenrspecies in detriment
of the ’looser’ one. In this regime, only two asymmetric etagéxist [(low,high),
(high,low)]. This is illustrated in the inset by the probigkidistribution of the
x component, obtained by solving the stochastic system. (€)prabability of
promoter occupation for autoactivation of the looser sgg@n this casey-auto,
black solid line) never reaches the necessary level foc&fe activation. (B)
If relative binding affinity is strongly favored for autoaetion (¢ = 0.2), the
species with smaller initial expression is rapidly incediscompensating the ini-
tial difference. Here a new (high,high) expression statvalable compared to
the previous case (see inset). (C) Probability of occupdtiomutoregulation is
increased faster in the less abundant species (black sudid |
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Figure S9: Role of positive autoregulation in mutual-adtora switches. (A)
Response to a signal increasing the degradation of both auenp®as a function
of cross-interaction strength, for a switch without augpdation ¢ = 1). The

system is initially (no stimulus) in a monostable high exsien regime. For
v < 12, the signal decreases gradually the expression. For highafues, a
low expression state is also stabilized and a progressidn {2 (0,0) can take
place depending on signal strength. (B) For the same stimwieisake a cross-

interaction strength of = 10 (no response regime) and examine the response

as a function of autoregulation. Fpr> 10 a bistability regime, and eventually
a progreswitch, transition can take place. Thus, the poesehautoregulation
enables a circuit to work as a switch in a signaling enviromnvehere it would
not work as such otherwise, i.t., without autoactivationthé€d parameters in (B)

area =1,0 = 0.2.
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Figure S10: Autoregulation favors flexibility in signal pessing. Normalized
response after a sustained degradation signal with diffénéensities inc andy
components. (A) A switch without autoregulation in a symmediistable regime
(e = 0.1, = 20) responds to signal asymmetries. In a color code, we show
the concentration of the species normalized by the initial equilibrium value (no
signal). Note that for signal larger than 0.1 in one component a transition
(1,1) — (0,0) is attained, irrespective of the strength of the signal edther
component. (B) For the same value of crossinteractios-(20) but strong au-
toregulation p = 20,0 = 0.1, see Figure 2 in main text) a switch transition
requires higher signal strengths and a minimum signal tlmidsn both compo-
nents.
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Figure S11: Influence of Hill coefficients on phenotypic map$his map
shows the areas of coexistence of several expression gmatdisstability) in a
o-p parameter space for a Hill coefficient oE4, e.g.,z, y species acting as
tetramers. These regions arg;; bne (low,low) expression state,,tl coexis-
tence of (low,high)—(high,low), antisymmetric, expressstates, lljr, i, trista-
bility with two antisymmetric states and one symmetric estddbw or high, 1V;
coexistence of four expression states. (A) Phenotypic mamtitual—inhibition
with low basal production ratev(= 0, a« = 0.1) corresponding to Fig. 2A in
main text. (B) Phenotypic map for mutual inhibition and highasal production
(v = 0, a = 1) corresponding to Fig. 2D, main text. Note that larger Hileti-
cient implies a higher degree of non-linearity but that gaive conclusions hold,
e.g., there exits a decision switch transition from-MII 1, if the initial expression
state is (high,high), Fig. S11.A.
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Factor Type of autoregulation Mediators Reference
T iptional
Oct4/Sox2 ranscriptiona Sox2/Oct4 Chew [1]
cooperative
Transcriptional Boyer [2]
Nanog cooperative Sall4 Wu [3]
Ac Transcrlptlpnal Da Cabrera [4]
cooperative Van Doren [5]
Sc Transcrlptlpnal Da Martinez [6]
cooperative Van Doren [5]
- Blais [7]
MyoG Transcriptional Myf Braun [8]
- Blais [7]
Mef2C Transcriptional MyoD Wang [9]
Sox9 Transcriptional Unknown Lynn [10]
Foxa2 Transcriptional Direct Pani [11]
p42 Post-translational Mos, MEK Matten [12]
Cdc2 Post-translational Cdc25, Mytl Xiong [13]
Casp3 Post-translational Casp8 Legewie [14]
: hiozaki [1
Casp9 Post-translational Apfl Shiozaki [15]
Cdx2 Transcriptional Cell type Xu [16]
specific

Table S 1: Positive autoregulation of the factors involvadmutual activa-

tion/inhibition architectures in Tablel



Factor Type of autoregulation Mediators Reference
GATAL Transcriptional Direct Tsai[17]
Transcriptional
PU.1 . cJun Okuno [18]
cooperative
Transcriptional + . Mullen [19]
T-bet Autocrine loop cytokines(IFN=) Lighvani [20]
Transcriptional+ Zhou [21]
t : IL-4
Gatas Autocrine loop Ansel [22]
Pax6 Transcriptional Direct Yamaguchi [23]
Pax2 Transcriptional Shh signal? Schwarz [24]
cog-1 Transcriptional Direct Johnston [25]
die-1 Translational lim-6 Johnston [25]
wts Transcriptional Unknown Mikeladzi-Dvali [26]
melt Transcriptional Unknown Mikeladzi-Dvali [26]
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