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Effective models; motivation

To describe the dynamics of many of the control circuits listed in Table 1 (main
text), we consider two interacting regulators which are able to affect each other’s
production, while positively autoregulating their own expression. We further sup-
pose these regulators to be transcription factors acting ashomodimers, as is the
case in bHLH proteins (e.g. Ac, Sc, Pax6, MyoG in Tables 1 and S1), leucine
zipper factors or some types of homeodomain proteins, such as the POU factor
Oct4 [1] or the caudal related protein Cdx2 [2]. Although manyof the feedback
interactions found in cell differentiation contexts are mediated by additional tran-
scription factors, signals, etc., we seek to represent the basic dynamical features of
these switches with a plausible mathematical model and a minimal set of parame-
ters of biological significance. For instance, indirect regulation with the aid of an
intermediate species can be simplified, under the assumption that this intermedi-
ate is in equilibrium, to the same mathematical equations discussed here. Thus,
we start by writing the biochemical reactions for production and degradation of
four molecular species: protein and mRNA of each of the two components (X,Y )
of the control module. These reactions can be separated in fast and slow.

Fast equilibrium reactions

We assume that DNA-binding reactions and dimerization are fast. Furthermore,
they are lumped together in a single reaction term under the equilibrium assump-
tion. Since each component is regulated by its own product aswell as by the
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partner’s, we consider in principle different promoter binding sites forX or Y
molecules. These sites can be independent, interacting or completely overlapping
as is the case in both prokaryotic [3] and eukaryotic transcription regulation [4],
giving rise to a potential combinatorial logic of gene expression [5,6].

Px + 2X Kx
x←→ PxX2,

Px + 2Y
Kx

y

←→ PxY2,

Py + 2Y K
y

y

←→ PyY2,

Py + 2X K
y

x←→ PyX2,

(1)

Px + 2X + 2Y
Kx

xy

←→ PxX2Y2,

Py + 2X + 2Y K
y

xy

←→ PyX2Y2.
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Here theK ’s represent products of equilibrium constants, being thisthe product of
binding (protein-DNA) and dimerization constants, in Eqs.(1), or joint binding
constants,Ki

xy(i = x, y) in Eqs. (2). In the case of two independent promoter
sites,Ki

xy = Ki
x ×Ki

y, while for overlapping promoters, only one species can be
bound at a time andKi

xy = 0.

Slow equations

Transcription, translation and degradation of both components are considered as
slow reactions. Explicitly,

Px
βx−→ Px + mx,

PxX2
ρxβx−→ PxX2 + mx,

PxY2
νxβx−→ PxY2 + mx,

PxX2Y2
µxβx−→ PxX2Y2 + mx,

mx
γx−→ mx + X,

mx
δmx−→ ∅,

X
δx−→ ∅, (3)
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and analogous equations for theY species. Hereβi(i = x, y) are the correspond-
ing basal transcription rates,ρi andνi the auto and crossregulation strengths re-
spectively, andµi the joint regulatory strength. For independent promoter sites
µi = ρi × νi. With the constraint that the total number of promoters (copy num-
ber) is fixed,P T

i = Pi + PiX + PiY2 + PiX2Y2, and using the fast equilibrium
reactions [Eqs. (1)-(2)] we obtain the time evolution of thefour molecular species
considered here as

dmx

dt
= βxP

T
x

1 + ρxK
x
x ·X

2 + νxK
x
y · Y

2 + µxK
x
xy ·X

2 · Y 2
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2 + Kx
xy ·X

2 · Y 2
− δmxmx,

dX
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dmy

dt
= βyP

T
y
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y
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y
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2 · Y 2

1 + Ky
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y · Y 2 + Ky
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− δmymy,

dY

dt
= γymy − δyY.

(4)

These are differential equations for the total number of proteins per cell. To con-
vert to cellular protein concentration one needs to divide by cell volume,[X] =
X/V . The time evolution for each species concentration is now
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x ]
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(5)

where[P T
i ] is the total promoter concentration for each gene, and the deterministic

rate constants have been appropriately rescaled by cell volume for the series of
bimolecular reactions, i.e.,ki

j = Ki
j×V 2 andki

ij = Ki
ij×V 4, with {i, j} = {x, y}.

Cell growth and division can be taken into account in an approximate manner by
assuming an exponential law for growth [8],V (t) = V0 exp (kgt). The growth
rate is given bykg = ln(α)/Tccyc, whereTccyc is the mean division time andα a
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scale parameter giving the maximum increase in cell volume (typically α = 2).
Then cell division occurs whenV (t = Tccyc) = αV0. Assuming that the total
number of promoters scales proportionally with the cell volume, and using for the
time evolution of the molecular concentrationsd[X]

dt
= 1

V (t)

(

dX
dt
− [X]dV (t)

dt

)

, the
resultant equations are identical to Eqs. (5) except that the degradation rates for
mRNA and protein are now given byδ′mx,my = δmx,my+kg, δ′x,y = δx,y+kg, which
are effectively taken as a single parameter. For stable proteins,δx,y ≪ kg and
degradation is just due to dilution by cell growth and division. Protein degradation
can be faster (e.g., by proteases or by sequestration or inactivation with different
molecular species), which implies thatδx,y ≫ kg and the growth term can be
neglected.

Scaled variables and quasi-steady state approximation

We want to reduce both the number of variables to make the system amenable
for mathematical and phase plane analysis, and the number ofparameters to the
minimum set with biological significance. First, it is convenient to define dimen-
sionless mRNA and protein concentrations by

x =
√

kx
x[X],

mx =
√

kx
x[mx],

y =
√

ky
y [Y ],

my =
√

ky
y [my]. (6)

Eqs. (5) now become
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x ]
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dmy
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√
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(7)

with σi = ki
j/k

i
i (ratio of cross over self-binding rates) andσij = ki

ij/(k
i
i · k

i
j)

(ratio of joint over independent rates for simultaneous binding of both species).
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We note that for completely overlapping promoter sites (XOR transcriptional gate)
σij = 0, whereas for independent promoter sitesσij = σi × σj, µi = ρi × νi and
the non-linear production rates for mRNA are the product of two Hill functions,
one for each variable. Applying the standard quasi-steady state approximation
(QSSA, fast mRNA dynamics compared to protein dynamics),dmx

dt
= dmy

dt
∼ 0,

one readily obtains Eqs. (1) in the main text with

αi = βi[P
T
i ]

√

ki
i bi, (8)

wherebi = γi/δmi is the burst parameter or translational efficiency.
To gain insight on the validity of this approximation, let asassume similar

production and degradation rates for both components, i.e., γx = γy ≡ γ, βx =
βy ≡ β, δx = δy ≡ δ and δmx = δmy ≡ δm. Rescaling time by the protein
degradation rate,τ = t · δ, Eqs. (7) can be written as

dmx

dτ
=

αx

b δ
f(x, y)−∆ ·mx,

dx

dτ
= ∆ · b ·mx − x,

dmy

dτ
=

αy

b δ
g(x, y)−∆ ·my,

dy

dτ
= ∆ · b ·my − y, (9)

where∆ = δm/δ is the relative messenger-protein degradation rate. The vari-
ation of mRNA at short time scales can be obtained by considering the protein
concentration fixed. Then, from Eqs. (9) one sees that for constant protein values
mRNA decays asmx,y(τ) ∝ exp (−∆τ) while for constant messenger concen-
tration the decay in protein concentration is simply∝ exp (−τ). Therefore it is
reasonable to expect that mRNA dynamics adapts much faster toprotein changes
when∆ >> 1. This is illustrated in Fig. S1. For∆ = 10, the QSSA is a fairly
good approximation to the four-dimensional dynamics (compare black and red
lines), while for∆ = 1 the two- and four-dimensional trajectories (black and blue
lines) separate, although they eventually converge to the same equilibrium state
in the long run. Indeed, we checked that the multistability domains in the phe-
notypic maps shown in Figures 2 and S3 are the same when calculated with the
four-variable model [11]. The effect of changingb is important when consider-
ing the stochastic dynamics [9]. In fact, experimental studies of stochastic gene
expression in single cells demonstrate that translationalbursting is an important

5



source of stochasticity in prokarytic [10] and eukaryotic gene expression when
coupled to transcriptional noise [12].

Stochastic simulations and parameter ranges

Provided that equilibrium and quasi-steady state approximations hold for the de-
terministic system, stochastic simulations using Gillespie’s method [13] can be
simplified in a similar vein [14, 15]. Therefore we used the four-dimensional
model Eqs. (5) as a starting point for the stochastic simulations. To have a full
correspondence with the simplified two-dimensional model,Eq. (1) in main text,
we need to specify the following parameters:

(1) Regulatory strengths (ρi, νi, µi), or fold-change in promoter activity once
the proper transcription factor is bound. These parametersspan from0 (to-
tal inhibition) to 100 for the case of strong activation. This range reflects
orders of magnitude typically found in both prokayotic and eukaryotic gene
regulation.

(2) Relative binding affinities both for individual(σi) and joint (σi
xy) species.σi

is varied between (0.01,2). A value ofσi < 1 denotes higher binding affinity
of a given promoter for its own protein (and then the threshold for autoreg-
ulation is smaller than for cross-interaction) whileσi > 1 corresponds to
the opposite situation.σi

xy is set to0 for most of the paper calculations
(completely overlapping promoter sites) but it can range from this value to
σi × σj (independent promoter sites).

(3) We need also to specify the scaling factorskx
x andky

y (promoter binding
constants for each species) in the deterministic case. Recall that these are
the product of dimerization and protein-DNA association constants. Here
we fix kx

x = ky
y = 10−3 nM−2 (a range10−1 − 10−3 is typically found in

bacteria [16]). The stochastic rate constants are obtainedfrom the determin-
istic ones asKx

x = kx
x/V 2, Ky

y = ky
y/V

2, Kx
y = Kx

x · σx, Ky
x = Ky

y · σy,
Kx

xy = Kx
x · K

x
y · σxy andKy

xy = Ky
y · K

y
x · σyx, whereV represents cell

volume. In the stochastic simulations cell growth and division can be taken
into account by consideringV as an additional random variable obeying the
equationdV/dt = kgV , until a maximum value is attained [17,18]. Here we
do not take into account the contribution of cell growth to gene expression
noise, and fixV = V0 · Ω in stochastic simulations, whereV0 is a reference
cell volume including Avogadro’s number andΩ a scale factor giving the
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contribution of protein number or finite size effects to molecular noise [19].
For a given value of molecular concentrations, the greater the scaling factor
Ω the larger the number of molecules, i.e., noise is reduced. In our simula-
tions, we takeV0 = 109l for simplicity (note that concentrations are in nM)
which implies a cell volume of 1.7µm3. We also takeΩ = 10 in most of
the simulations. The effect of finite size noise in the protein steady-state
distributions is illustrated in Figure S2 (compare black and red lines).

(4) Relative molecular stabilities. From the adimensional analysis of the four-
variable model, Eqs. (9), we also fix the ratio of protein/mRNAdegradation
to a value∆ = 10, which implies a ten times faster degradation rate for
mRNAs than for protein. Then we suppose that proteins are stable and
mainly decay by dilution due to cell growth. Assuming a protein half-life of
one hour (δx = δy = 1 h−1) then messengers are degraded on average every
six minutes, which are typical values of prokaryotes.

(5) Burst parameter or translational efficiency. We usebx = by = 1 for most
simulations (for a glimpse on the effect induced by translational efficiency
on molecular noise, compare black and blue lines in Figure S2).

(6) Finally, we specify the average protein production rateai = αi/δi as for
the two-dimensional model Eq. (1). Setting the copy-numberP T

x = P T
y =

1, then the basal transcription rates follow from the given parameters as

βi = ai · δi/(
√

Ki
i · P

T
i · bi). Note that a ten-fold increase in translational

efficiency is coupled here to a ten-fold decrease in transcription and thus the
average number of proteins remains the same, but the number of messenger
molecules is reduced (mRNA noise). On the other hand, a ten-fold increase
in volume produces also a ten-fold increase in transcription and abundance
of proteins and mRNAs are increased in the same way (finite sizenoise).
The different effects of these two factors in the width of protein distributions
are shown in Figure S2.

Signals

We model signals as molecular species external to the circuits considered. As
such, they follow an independent dynamics that we approximate as a birth-death
process:

dS

dt
= αs − δs · S. (10)
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To create a signal pulse, we fix the degradation rate atδs = 1h−1. Initially, the
signal production rate isαs = 0. At a given time, the signal is produced at a steady
rateαs = seq · δs so that it quickly reaches their maximum valueseq (see insets
in Fig. 5A). The signal is terminated at a later time when the source disappears
andαs is set to zero again. For the deterministic equations,s is the signal con-
centration andαS has units ofnM.h−1. In the stochastic simulations, the noise in
the signal can be varied independently from the noise in the circuit components
defining the stochastic production rateαs

s = αs · Vs whereVs is a volume factor
changing the number of signal molecules. Signals are broadly considered affect-
ing the circuit components in two possible ways: fast, inducing post-translational
modifications of theX or Y proteins. In this case, the equations for(X,Y ) are
only modified by an extra linear degradation/production term originated from the
reactions

S + X
δs
x−→ S,

S + Y
δs
y

−→ S,

S
αs

x−→ S + X,

S
αs

x−→ S + Y. (11)

Slow: signals may be transcription factors external to the circuit, that may act
repressing or activating the(X,Y ) components. Here we assume that indepen-
dent promoter sites are available for the signal molecules (although they could
also operate cooperatively with any of both species). Equations are now modified
according to the reactions.

PxS
τxβy

−→ PxS + mx,

PyS
τyβy

−→ PyS + my, (12)

whereτx,y are the signal regulation strengths (τx,y < 1 for inhibitory signals,
τx,y > 1 for excitatory ones).

In the main text, we showed examples of signal processing with fast or post-
translational events. Similar computational properties can be obtained with slow
or transcriptional signals in the appropriate regimes. However, slow signals may
change the response dynamics and thus the discrimination performance of some
stimulus features. An example is the discrimination of biased stimulus strength in
stochastic decision switches (see Figure 4.C in main text).In a stochastic decision
switch, a symmetric expression state (a stable node) becomes unstable due to a

8



subcritical pitchfork bifurcation (and then becomes a saddle point, with the unsta-
ble direction being perpendicular to the diagonal in the phase plane). Although
this bifurcation can be induced by both fast and slow signalling events, fast signals
usually promote faster dynamics along the unstable direction, and this results in a
faster discrimination of biased signal amplitudes. This isillustrated in Figure S6,
where a decision switch operating close to the pitchfork bifurcation discriminates
fast (Figure S6.A) and slow (Figure S6.B) inhibitory signals. One sees that not
only discrimination performance of fast signals is steeper, but also signal noise
affects this performance in a greater extent.

Role of autoregulation in symmetric progression switches

From the biological scenarios documented in the literature(see Table 1) it seems
that genetic architectures of mutual activation of key transcription factors with au-
toregulation operate as standard (symmetric) progressionswitches. One possible
reason inferred from our analysis is that, for moderate to strong crossinteractions,
autoregulation should be exceedingly high to generate the coexistence of asym-
metric expression states. What could be the role played by autoregulation in these
type of circuits? Here we have investigated two possible reasons, both confer-
ring flexibility to switch performance. One possibility is that, for a fixed cross-
interaction strength where the circuit is not able to operate as a switch (being in a
monostable regime), the modulation of autoactivatory loops may enable the sys-
tem to work as a switch. This is demonstrated in Figure S9. Fora standard switch
without autoregulation (Figure S9.A) if we keep the crossinteraction-strength at
ν = 10, a (degradation) signal is not able to change the initial (high,high) ex-
pression state. For the same cross-interaction strength, and adding autoactivation
to both circuit components, in a proper range of autoregulation strength the cir-
cuit is able to work as a switch upon the same signal (Figure S9.B). The second
possibility is that autoregulation may change the combinatory of signals to which
a mutual-activation switch responds. In Figure S10, we showthe response of a
mutual-activation architecture placed in a (high,high) expression state to indepen-
dent degradation signals in theX andY components. In the case that there is no
autoregulation (Figure S10.A) the switch responds as a fuzzy OR gate (a signal
affecting only one component above a given threshold induces a change of expres-
sion state). However, by adding autoactivation we need the simultaneous action
of signals on both components (AND gate) to switch to the (low,low) expression
state.
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Figure S1: Deterministic dynamics for the reduced two-variable model (black
lines) compared to the four-variable model with different ratios of mRNA and
protein degradation (∆). Red line: ∆ = 10. Blue line: ∆ = 1. Solid lines
correspond to the time evolution of thex component, and dashed lines to they
component. The systen is in the tristability regime withρx = ρy = 10, νx = νy =
0 (mutual inhibition),σx = σy = 0.2 andαx = αy = 1.
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Figure S2: Comparison of different algorithms and intrinsicnoise sources. Prob-
ability distribution of thex component concentration for a population of cells in
a symmetric high expression state. Solid lines: simulations with Gillespie’s al-
gorithm. Dashed lines: solution of the chemical Langevin equations. Black lines
correspond to a burst parameterb = 1 and a volume factorΩ = 10 (V = V0 · Ω).
Blue lines: effect of translational bursting (b = 10, Ω = 10). Red lines: Effect of
finite size noise (b = 1, Ω = 1). Other parameters of the model for the stochastic
simulations areρx = ρy = 10, νx = νy = 0, σx = σy = 0.2 (mutual inhibition,
tristability regime),αx = αy = 1 andkx

x = ky
y = 0.001 nM−2.

13



1 3 5 7 9
ρ

40

80

120

160

µ

σ=0
σ=0.2

0 20 40 60 80 100
ρ

0

0.2

0.4

0.6

0.8
σ

1 5 9 13 17
ρ

40

80

120

160

µ

σ=0
σ=0.2
σ=0.5
σ=1

0 20 40 60 80 100
ρ

0.5

1

1.5

2

σ

IH

IIA

IIIH

IH

IIA

A C

B D

ν=2

ν=20

Figure S3: (A,B). Phenotypic map of the circuit with average production rate
a = 1 and different cross-interaction strengths. (A)ν = 2, (B) ν = 20 (the
cross-inhibition caseν = 0 is shown in Fig. 2B). In these panels, like in Figure
2, promoters are completely overlapping (σxy = 0). (C,D) A possible role played
by cooperativity among species. Here we plot the phenotypicmap fora = 1, as a
function of the autoregulation and the joint interaction strength parameterµ, Eq.
(1) main text, for slightly non-overlapping promoters (σxy = 0.001) and cross-
interaction strengthsν = 2 (C) andν = 20 (D). In the case of total competition
for the same promoter site, panels (A,B), positive cross-interaction is not able to
generate bistability of symmetric expression states (0,0), (1,1), since at an average
production ratea = 1 the lower (0,0) state is not stabilized. Strong cooperativity
(recall thatµ = ρ × ν for independent regulation) together with competition for
the same binding sites favors the appearance of a low (0,0) expression state and
bistability (stability regions correspond to the areas inside cusps).
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Figure S4: Reversible (graded) deci-switch. The intersection between the cir-
cuit response curves or nullclines (lines in thex-y planes) identifies the system
steady states, being these either stable (filled circles), or unstable (empty circles).
In this way, a range of different initial concentrations of the circuit components
(basin of attraction; light and dark grey areas) ends up in the same expression
state. A reversible deci-switch is associated to a transition in which the initial
expression state (0,0) becomes unstable (A). Two new asymmetric states appear
in a graded fashion (B). This is a supercritical pitchfork bifurcation, insets (A-B),
where the magnitude and types of available equilibria are plotted as a given pa-
rameter changes in thex-axis (solid line; steady state, dotted line; unstable state).
Note that in this case there exist no hysteresis. The transition is reversible, which
means that the appearance of new expression states stronglydepends on the pres-
ence of a external factor (acting as bifurcation parameter). This could represent,
for instance, a primary master regulator.
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Figure S5: (A) Increased autoregulation enhances durationdetection. Here we
examine how the response of a decision switch to stimulus duration depends on
autoregulation strength. The response for an autoregulation strengthρ = 10 (red
line and filled circles, the same as in Fig. 4B) is compared to the response at
ρ = 50 (blue line, open squares) for a fast signal producing the same threshold in
duration detection. Larger autoregulation induces a sharper discrimination perfor-
mance. Other parameter values areν = 0, a = 1. (B) Increased autoregulation,
however, delays differential amplitude detection in stochastic decision switches.
Same symbols and parameters than those in panel (A).
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Figure S6: Effect of fast and slow signals on strength discrimination. A mutual
inhibition switch is placed in a regime (ρ = 30, ν = 0, σ = 0.2, a = 0.1) where a
symmetric (high,high) expression state becomes unstable with similar amplitudes
for: A. fast and B. slow degradation signals. Red lines and circles show the per-
formance using deterministic signal pulses, and blue lines(squares) adding noise
to the signals such that the mean number of signal molecules is the same in both
cases. Lines are fits to Weibull or stretched exponential functions.
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linear relation,ρ/ν ∝ 1/σ. For instance,ρ/ν > 20 indicates a tristable domain at
σ = 0.2. Notice that for highσ values the symmetric expression state (1,1) is no
longer available and only two asymmetric equilibria coexist.
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Figure S8: Autoregulation as a compensation mechanism. Formutual inhibi-
tion (ν = 0) and moderate autoactivation (ρ = 5), the ratio of binding affini-
ties (σ parameter) determines if the circuit behaves as a toggle switch (A,C) or
generates tristability (B,D). (A) With similar binding affinities (σ = 0.6), the
autoregulation is acting at the same time than cross-interaction. Then mutual in-
hibition dominates, amplifying the expression of the ’winner’ species in detriment
of the ’looser’ one. In this regime, only two asymmetric states exist [(low,high),
(high,low)]. This is illustrated in the inset by the probability distribution of the
x component, obtained by solving the stochastic system. (C) The probability of
promoter occupation for autoactivation of the looser species (in this case,x-auto,
black solid line) never reaches the necessary level for effective activation. (B)
If relative binding affinity is strongly favored for autoactivation (σ = 0.2), the
species with smaller initial expression is rapidly increased, compensating the ini-
tial difference. Here a new (high,high) expression state isavailable compared to
the previous case (see inset). (C) Probability of occupationfor autoregulation is
increased faster in the less abundant species (black solid line).
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Figure S9: Role of positive autoregulation in mutual-activation switches. (A)
Response to a signal increasing the degradation of both components as a function
of cross-interaction strength, for a switch without autoregulation (a = 1). The
system is initially (no stimulus) in a monostable high expression regime. For
ν < 12, the signal decreases gradually the expression. For higherν values, a
low expression state is also stabilized and a progression (1,1)→ (0,0) can take
place depending on signal strength. (B) For the same stimulus, we take a cross-
interaction strength ofν = 10 (no response regime) and examine the response
as a function of autoregulation. Forρ > 10 a bistability regime, and eventually
a progreswitch, transition can take place. Thus, the presence of autoregulation
enables a circuit to work as a switch in a signaling environment where it would
not work as such otherwise, i.t., without autoactivation. Other parameters in (B)
area = 1, σ = 0.2.

20



0.05

signal x

0.150 0.20.1

si
g
n
al

 y

0.2

0.15

0.1

0.05

0

A

0.05

signal x

0.150 0.20.1

0.2

0.15

0.1

0.05

si
g
n
al

 y

B

0

1

0

Figure S10: Autoregulation favors flexibility in signal processing. Normalized
response after a sustained degradation signal with different intensities inx andy
components. (A) A switch without autoregulation in a symmetric bistable regime
(a = 0.1, ν = 20) responds to signal asymmetries. In a color code, we show
the concentration of thex species normalized by the initial equilibrium value (no
signal). Note that for signal larger than∼ 0.1 in one component a transition
(1, 1) → (0, 0) is attained, irrespective of the strength of the signal in the other
component. (B) For the same value of crossinteraction (ν = 20) but strong au-
toregulation (ρ = 20, σ = 0.1, see Figure 2 in main text) a switch transition
requires higher signal strengths and a minimum signal threshold in both compo-
nents.
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Figure S 11: Influence of Hill coefficients on phenotypic maps. This map
shows the areas of coexistence of several expression states(multistability) in a
σ-ρ parameter space for a Hill coefficient ofn=4, e.g.,x, y species acting as
tetramers. These regions are: IL; one (low,low) expression state, IIA; coexis-
tence of (low,high)–(high,low), antisymmetric, expression states, III{L,H}; trista-
bility with two antisymmetric states and one symmetric state, low or high, IV;
coexistence of four expression states. (A) Phenotypic map for mutual–inhibition
with low basal production rate (ν = 0, a = 0.1) corresponding to Fig. 2A in
main text. (B) Phenotypic map for mutual inhibition and higher basal production
(ν = 0, a = 1) corresponding to Fig. 2D, main text. Note that larger Hill coeffi-
cient implies a higher degree of non-linearity but that qualitative conclusions hold,
e.g., there exits a decision switch transition from IV→III L if the initial expression
state is (high,high), Fig. S11.A.
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Factor Type of autoregulation Mediators Reference

Oct4/Sox2
Transcriptional

Sox2/Oct4 Chew [1]
cooperative

Nanog
Transcriptional

Sall4
Boyer [2]

cooperative Wu [3]

Ac
Transcriptional

Da
Cabrera [4]

cooperative Van Doren [5]

Sc
Transcriptional

Da
Martinez [6]

cooperative Van Doren [5]

MyoG Transcriptional Myf
Blais [7]
Braun [8]

Mef2C Transcriptional MyoD
Blais [7]
Wang [9]

Sox9 Transcriptional Unknown
Lynn [10]

Foxa2 Transcriptional Direct
Pani [11]

p42 Post-translational Mos, MEK
Matten [12]

Cdc2 Post-translational Cdc25, Myt1
Xiong [13]

Casp3 Post-translational Casp8
Legewie [14]

Casp9 Post-translational Apf1
Shiozaki [15]

Cdx2 Transcriptional
Cell type Xu [16]
specific

Table S 1: Positive autoregulation of the factors involved in mutual activa-
tion/inhibition architectures in Table1
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Factor Type of autoregulation Mediators Reference

GATA1 Transcriptional Direct Tsai [17]

PU.1
Transcriptional

cJun Okuno [18]
cooperative

T-bet
Transcriptional +

cytokines(IFN-γ)
Mullen [19]

Autocrine loop Lighvani [20]

Gata3
Transcriptional+

IL-4
Zhou [21]

Autocrine loop Ansel [22]

Pax6 Transcriptional Direct Yamaguchi [23]

Pax2 Transcriptional Shh signal? Schwarz [24]

cog-1 Transcriptional Direct Johnston [25]

die-1 Translational lim-6 Johnston [25]

wts Transcriptional Unknown Mikeladzi-Dvali [26]

melt Transcriptional Unknown Mikeladzi-Dvali [26]
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