
Chapter 9
On the Search for Design Principles
in Biological Systems

Juan F. Poyatos

Abstract The search for basic concepts and underlying principles was at the
core of the systems approach to science and technology. This approach was
somehow abandoned in mainstream biology after its initial proposal, due to the
rise and success of molecular biology. This situation has changed. The accumulated
knowledge of decades of molecular studies in combination with new technological
advances, while further highlighting the intricacies of natural systems, is also
bringing back the quest-for-principles research program. Here, I present two lessons
that I derived from my own quest: the importance of studying biological information
processing to identify common principles in seemingly unrelated contexts and the
adequacy of using known design principles at one level of biological organization
as a valuable tool to help recognizing principles at an alternative one. These and
additional lessons should contribute to the ultimate goal of establishing principles
able to integrate the many scales of biological complexity.

1 A New Discipline with Deep Roots

There appear to exist general system laws which apply to any system of a certain type,
irrespective of the particular properties of the system and of the elements involved.
Ludwig von Bertalanffy, 1969 [1].

The search for basic concepts and underlying principles was at the core of the
systems approach to science and technology. This approach was argued to be
necessary to “deal with complexities, with wholes or systems in all fields of
knowledge” [1]. Its application to biology was then similarly advocated with an
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emphasis in the need to discover principles of organization at all levels. However,
this research program was somehow abandoned in later years, as mainstream
biology benefited of the technical revolution associated to the rise of molecular
biology and to the discovery of the structure of the DNA [2]. Interestingly, further
technical revolutions (omics, large-scale computing, bio-imaging tools, to name a
few) and the knowledge accumulated over decades of molecular approaches are
bringing back the quest-for-principles program to the biological domain [3]. This
new attempt not only promises to provide a more comprehensive view of the cell
and its evolutionary and ecological constraints [4] but also hopes to bring different
disciplines together for the construction of novel biomolecular components [5].

Here, I discuss some of the lessons that we are already learning in the recent
search for “design principles.” To this aim, I present two lessons that I derived
from my own search (broader perspectives on this area can be found elsewhere,
e.g., [6, 7]): (1) the importance of studying biological information processing to
identify common principles in seemingly unrelated contexts and (2) the adequacy
of using known design principles at one level of biological organization as a valuable
tool to help recognizing principles at an alternative one. These and additional
lessons should contribute to the development of a better organismic understanding
of biology and to the ultimate goal of identifying its principles of organization at
various levels [1].

2 Two Fundamentals on the Search for Principles

2.1 Same Principles, Different Biological Contexts

Could we identify design principles at work in unrelated biological contexts? The
study of how information-processing tasks are achieved in biological systems could
provide us with such broad principles, as similar tasks are found in different
contexts, whether we talk of the brain sensing visual stimuli or of a bacterium
anticipating a particular metabolite. Indeed, the study of bacterial computations—
and bacterial protein networks—was proposed as a model system to appreciate
the functioning and evolution of more complex information-processing mecha-
nisms [8].

By focusing then on how information processing is especially implemented by
biological circuits, we recently characterized the presence of equivalent computa-
tional tasks in circuits found in different contexts [9, 10]. We first showed how
two-component genetic oscillators could act as “integrators” or “resonators” of
external stimuli in a similar way to neural systems. This classification is derived
from the early works of Alan Hodgkin [11] in which he proposed three broad
groups of cell membrane excitability (abrupt changes in the electrical potential)
applicable to different neurons. Class 1 and class 2 neurons were later associated to
two different bifurcations of the resting potential (saddle-node bifurcations, class
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1, and Andronov–Hopf bifurcations, class 2) that eventually determine different
computational attributes, e.g., integrator (class 1) or resonator (class 2) of incoming
spikes [12]. The proposed genetic circuits can show these two classes of bifurcations
leading to excitability (oscillations) that relate accordingly to their computational
differences [9].

Two-component genetic modules could also act as multistable switches, and
in [10] we discussed how signal-processing features of such “decision” switches
resemble those found in cortical circuits in monkeys, where the circuit logical
units represent populations of neurons [13, 14]. Genetic decision switches are
specifically constituted by two proteins, i.e., two transcriptional factors, that are
autoregulated and mutually inhibit each other (mutual activation can also be
considered [10]). We identified these topologies in several biological scenarios
(Fig. 9.1a) and showed how the presence of relatively strong autoregulation appears
as a necessary condition for the coexistence of distinct expression patterns of the
circuit components (multistability). Transitions between these states can be induced
by external factors, e.g., a characteristic stimulus, which effectively modify the
parameters of the circuit. One of these transitions is driven by what we termed
a decision switch: a genetic circuit exhibiting the coexistence of three expression
states and that can transit from this regime to a bistable (two states) one. This general
class of transition is linked to what is known as pitchfork bifurcation in the language
of dynamical systems (Fig. 9.1b) [18].

We demonstrated the potential of decision switches for multifaceted stimulus
processing, this including strength, duration, and flexible discrimination [10]. How
does, for instance, strength discrimination work? And how could it be potentially
tuned by selective forces? Imagine a situation in which a population of cells
are all expressing a symmetric high-expression state, i.e., a steady state of the
corresponding decision switch within each cell. Imagine now that a signal is acting
in both components of the circuit with the same duration. This signal could modify
the binding affinities of the associated transcriptional factors which is in turn
reflected in the change of a distinctive parameter of the system, i.e., σ .

In Fig. 9.2a, I plotted the (HIGH, HIGH) expression states of an initial population
of cells before any stimulus (cyan circles) in an X–Y concentration space. The
population expresses certain variability around the expected (deterministic) value
due to the presence of biochemical noise [19]. This expected value corresponds
to a stable steady state of the dynamical system, one of those points where the
response curves, or nullclines, of the system intersect (dashed curves in Fig. 9.2,
one could also find unstable steady states [18], white dots in the same figure).
A stimulus is now acting in both components of the circuit with the same strength
and duration (modifying the binding affinities, denoted by a parameter σ ). This
change alters the available steady states of the system (Fig. 9.2b). Specifically, the
previous (HIGH, HIGH) state becomes unstable (see also Fig. 9.1), and the circuit
evolves with approximately the same probability toward the (HIGH, LOW) or the
(LOW, HIGH) expression states, the only two steady states available in this situation
(yellow/green dots, Fig. 9.2b).
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Fig. 9.1 Structure and dynamics of the decision switch. The switch is constituted by two autoreg-
ulated logical units (a) that mutually inhibit each other. These units are commonly transcriptional
factors like those found in the context of mammalian embryogenesis (Cdx2, Oct3/4) [15], visual
system specification (Pax6, Pax2) [16], and Drosophila eye development (Wts, Melt) [17]. (b)
Bifurcation diagram of the steady-state level of one of the elements (X , adimensional) of a decision
switch as a function of the constituent proteins’ binding affinities (quantified by σ ). This switch
corresponds to a transition in which the initial symmetric expression state (HIGH, HIGH) (cyan dot)
becomes unstable as σ changes (continuous to dotted line). Only two expression states, (HIGH,
LOW) and (LOW, HIGH)—yellow/green dots—remain. The circuit goes then from having three
to two coexisting expression states by means of a pitchfork bifurcation [18]. These states could
correspond to the following fates in the examples of the table in (a): (Cdx2, Oct3/4), (HIGH,
HIGH) → precursor cells, (HIGH, LOW) → trophectoderm, (LOW, HIGH)→ inner cell mass, (Pax6,
Pax2), (HIGH, HIGH) → early eye epithelium, (HIGH, LOW) → optic cup, (LOW, HIGH) → optic
stalk; (Wts, Melt), (HIGH, LOW) → “yellow” photoreceptor, (LOW, HIGH) → “pale” photoreceptor

The previous scenario leads to a balance distribution of the initial population
into two new subpopulations, after the stimulus, expressing two complementary
phenotypes. This is associated to the symmetric partition of the X–Y space into two
basins of attraction (white/gray areas in Fig. 9.2b; a typical stochastic trajectory,
due to biochemical noise, to one of these attractors is shown in black). How
could this distribution be tuned? One possibility is that the stimulus strength
acting on each circuit components is different. In this way, the circuit computes
differences in stimulus strength and codes the result of this computation in the
phenotypic distribution of the population [10]. Moreover, unbalanced distributions
as response to symmetric signals could be obtained if the circuit presents some
relative asymmetry of its components. This could be related, for instance, to
different binding affinities of the two transcriptional factors. In this situation, even
a signal acting equivalently in both proteins would originate a biased decision-
making process. In a limiting case, asymmetries could turn the decision completely
deterministic as in Fig. 9.2c, d. In this case, the population expressing the (HIGH,
HIGH) state univocally goes to a single expression state, as the initial state fully
resides in the basin of attraction of the (LOW, HIGH) state, when the stimulus is
present, and stays trapped in that state as the signal is gone.
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Fig. 9.2 Decision-making of an initial (HIGH, HIGH) population (cyan circles in (a)) in con-
centration space (adimensional). After experiencing a stimulus affecting the binding affinities of
both proteins (X ,Y ) equivalently, ∼50% of cells evolve stochastically toward the (HIGH, LOW)
or (LOW, HIGH) state. However, a circuit with a slight asymmetry in binding affinities evolves
deterministically after the same stimulus to a single expression state (LOW, HIGH). Here, unstable
steady states are represented by white dots. The available basins of attractions of each circuit
when the signals are present are highlighted in white/gray areas. The stochastic change (due to
biochemical noise) in concentration space of two typical circuit expression states are represented
in black

2.2 Known Principles as Tools to Find New Principles

The search for principles in biology is not restricted of course to biological circuits.
A different domain in which this approach was followed focuses on understanding
how specific nucleotide sequences are recognized by regulatory proteins [20]. In
this case, even the potential presence of principles was under consideration [21] (a
debate commonly found in discussions about principles, see conclusions).
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Fig. 9.3 Section of the logo for the alignment of ∼2,700 HTH-LacI domains (a), including the
(AA-15, AA-16) recognition AAs (coordinates denote position in the alignment [22]). The helix-
2 (or recognition helix; RH) is embedded in the full HTH motif. The logo for the alignment of
the set of BSs associated to 370 LacI family members (BS sequences from RegTransBase [27])
is also shown. (b) Local regulation at the core of phylogenetic footprinting includes both
autoregulation which can be linked to the regulation of an upstream divergent operon and
downstream unidirectional adjacent regulation (BSs, white boxes) [23]. White arrow denotes the
transcriptional factor within a given operon

How do transcriptional factors recognize their cognate binding sites? Several
aspects can influence this process. Direct readouts are linked to how selected amino
acids (AAs) and nucleotides (NTs) partners do determine specificity, while indirect
readouts are mostly related to how structural features around the contacting AAs
could modify the recognition (this could also include aspects of DNA bending, etc).
These last features indeed limit the existence of a universal AA/NT recognition
code. Could we nevertheless find recognition principles of broad applicability?
We asked recently to what extent such a wide-coverage code might actually be
found [22]. Notably, we looked for recognition rules by introducing a new approach
to phylogenetic footprinting based on a known principle of biological circuits: the
pervasive presence of local regulation in prokaryotic transcriptional networks [23].

We consider the extensive LacI family of transcriptional regulators [24] as a
model system to address the previous question. In these proteins, their helix-turn-
helix (HTH) domain interacts with a group of cognate binding sites (BSs) [25].
We aligned ∼2,700 nonredundant HTH-LacI domain sequences using a database
of prokaryotic genomes [26] and identified potential BS sequences associated
to 370 LacI family members (using [27]). The binding modes associated to
these comparative analysis corroborated patterns previously identified with a few
structural studies and let us hypothesize that a large subfamily of LacI could present
a recognition code between specific NTs of their binding sequence (nucleotides NT-
5, NT-6) and specific AAs of their HTH domain (AA-15, AA-16; see Fig. 9.3a).

To search for wide-coverage rules between these NT/AA pairs, we needed to
identify—at a large scale—native BSs for each considered TF, independently of



9 On the Search for Design Principles in Biological Systems 189

I S

QT
VT
I T
PT

KA
HA
VA
L A
I A
PA
MA

NK
KK
I K

AI
PI

SM
TM
PM

TS
RS
HS

AS
I S
PS

KT

TG
VG
KS
RV

ES RG

KS
RS

KT

VS

I G
I C
SA
TA
KA
VA
L A
I A

YQ
HQ
L Q
I N

SQ
AI
KM
EM
AM
L M

A C G T

A

C

G

T

NT-4

N
T-

5

A
C
G
T

NT
5L4L

KM
VA

KS
YQ
HQ

(AA-15, AA-16)

a

b

5R
c 4R

c

Fig. 9.4 (AA-15, AA-16) sequences recognizing the same (NT-5, NT-4) pair were grouped in
(a). Here, we only considered significant palindromic NT sequences. Recognition degeneracies
are represented by divergent (intrinsic) or convergent (extrinsic, see main text) arrows. Colors
denote polar (green), basic (blue), acidic (red) and hydrophobic (black) AAs. In (b) a fraction of the
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the TF location in the LacI family phylogenetic tree. This search relied on the
assumption of the conservation of binding mode regardless of the evolutionary
distance. How could we find BSs for each of the TF considered? We made use of a
fundamental circuit-based principle found in prokaryotes: the widespread presence
of auto- and neighbor regulation [23]. We thus grouped regulators sharing the same
sequence of recognition residues, and within each of these “recognition classes,” we
looked for potential BSs in the intergenic regions around the operon encoding the
TF (see Fig. 9.3b). By applying phylogenetic footprinting techniques [28] on these
sequences, we obtained a nucleotide logo from each alignment of BSs associated to
a recognition class.

One could then naively accept that only BS logos with high information content
in both NT-4 and NT-5 would confirm the hypothesis of a recognition code.
However, the presence of low-information positions—in these two NTs—might
not necessarily reject our assumption but rather be explained by degeneracies in
the recognition process, an expected feature of extant codes [29]. Ambiguities
elucidated by intrinsic degeneracies [a particular (AA-15, AA-16) recognition class
shows some degeneracy in recognition of several BS sequences] are compatible
with our starting hypothesis. The code hypothesis must be revised, or even rejected,
when extrinsic degeneracies (TFs of same recognition class binding opposite BSs)
are common. Indeed, we only found a few cases of TFs with the same sequence
in the specificity pair but recognizing incompatible BSs. This absence of extrinsic
degeneracies suggests the presence of an AA/NT recognition code (Fig. 9.4a) [22].

How could we validate the predictions of the proposed rules? We followed three
complementary strategies. First, we confirmed some of the theoretical predictions
with experimental data of LacI mutants (e.g., [30]). These mutational studies
supported code predictions. Second, we used several observations of our analysis to
certify the natural counterpart of a binding mode previously considered only to be a
laboratory construct (the binding of LacI to the synthetic site SymL [31]). Finally,
we identified convergence events in the recognition process (same AAs associated
to the same NTs throughout the gene tree, Fig. 9.4b), i.e., as a consequence of
the stability of the binding mode, evolution finds the same recognition solution
repeatedly. Thus, by using a known principle in one level of organization (local
regulation at the circuit level), we were able to identify new principles at a different
one (an AA/NT recognition code at the protein/DNA level).

�
Fig. 9.4 full gene tree involving all TFs with BSs is shown. External color code displays the
specificity-associated positions—to help visualization of palindromic combinations right positions
are read in the complementary (c) strand: (NT-5L , NT-4L; NT-5c

R, NT-4c
R). The color background

in several branches corresponds to different recognition AAs (a few classes were only enhanced).
Dots in branches denote bootstrap values larger than 80 (for 100 trees total, see [22] for full tree
and further details)
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3 Conclusions

The possibility of finding simplifying principles in biology was contemplated
since the early days of General System Theory [1]. This was part of a broader
interest to search for principles in many diverse complex systems, a task that
seems particularly timely nowadays [39]. Is this search correct in biology? People
with different backgrounds (molecular biologists, physicists, engineers, etc.) would
probably answer differently—some opinions being particularly adverse—but they
would all most likely agree that some “pragmatic guidelines” [32] are at least needed
if we are to understand biological systems.

Lessons on such quest for principles can also be observed, and here, I discussed
two. The first one reproduces early discussions of Systems Theory on the presence
of isomorphisms in science. I showed how specific ideas discussed in (com-
putational) neuroscience (integrator/resonator oscillators, flexible discrimination,
etc.) could also be applicable to genetic modules [9, 10]. Further interactions
between these fields are expected [33]. Genetic circuits could be thus genuinely
implementing a number of dynamical principles (e.g., relaxation oscillators) found
in many unrelated areas. Moreover, knowledge of a particular principle at one level
of biological organization could help us to understand/identify patterns at a distinct
level. This is my second proposal that I illustrated with an example of how to
identify TF-DNA recognition rules in bacteria [22]. To this aim, we made use of a
widespread principle of bacterial regulation, i.e., local control of expression [23],
to modify standard phylogenetic footprinting techniques. Additional examples
include the use of principles of metabolic [34] or signaling [35] networks to better
understand the forces behind gene dispensability and duplication.

Could one anticipate future research areas to develop? Let me suggest two
that balance both fundamental and applied research. We can broadly ask first,
thanks to current technology, which principle is at use in a particular biological
context, how is it genetically implemented (e.g., which type of circuit and molecular
agents), and what type of evolutionary forces could have originated such genetic
architecture as compared to other accessible alternatives (e.g., [36–38]). These
studies could also contribute to our understanding of how adaptive forces eventually
work at different levels of biological organization [40], a crucial question indeed.
A second attractive area is that of combining those principles directly observed in
biological systems to motivate the construction of novel molecular (e.g., synthetic
biology [5]) or engineering (e.g., bio-inspired robotics [41]) systems with many
possible applications. The successful, and unsuccessful, assembly of these artificial
systems would in the end help us to better delineate the evolutionary processes and
ecological scenarios contributing to the emergence of the principles tested [42].

Given the relevance of these practical and fundamental questions, the pursuit of
identifying a number of guiding rules in biology emerges as a decisive one.
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